The UOB-Telecom ParisTech Arabic Handwriting Recognition and Translation Systems for the OpenHart 2013 Competition

Gespeichert in:
Bibliographische Detailangaben
Titel: The UOB-Telecom ParisTech Arabic Handwriting Recognition and Translation Systems for the OpenHart 2013 Competition
Autoren: Morillot, Olivier, Oprean, Cristina, Likforman-Sulem, Laurence, Mokbel, Chafic, Chammas, Edgar, Grosicki, Emmanuèle
Weitere Verfasser: Laboratoire Traitement et Communication de l'Information (LTCI), Télécom ParisTech-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS), University of Balamand Liban (UOB), CEP Arcueil (DGA/CTA/DT/GIP), Délégation Générale pour l'Armement
Quelle: OpenHaRT 2013 Workshop Proceedings ; 12th International Conference on Document Analysis and Recognition (ICDAR), 2013 ; https://hal.science/hal-00948985 ; 12th International Conference on Document Analysis and Recognition (ICDAR), 2013, Aug 2013, Washington DC, United States. pp.NIST
Verlagsinformationen: HAL CCSD
Publikationsjahr: 2013
Bestand: Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
Schlagwörter: [INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI], [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV], [INFO.INFO-TT]Computer Science [cs]/Document and Text Processing
Geographisches Schlagwort: Washington DC, United States
Time: Washington DC, United States
Beschreibung: International audience ; This article is a description of the two systems proposed for the recognition of Arabic handwritten text lines and for the automatic translation of text-line and sentence images into English text. The recognition systems are based on HMMs (Hidden Markov Models) and BLSTMs (bi-directional long short term memory) recurrent networks. Two SMT (Statistical Machine Translation) systems based on MOSES [1] were built for the evaluation system: one on text-line translation and one for sentence translation.
Publikationsart: conference object
Sprache: English
Relation: hal-00948985; https://hal.science/hal-00948985; https://hal.science/hal-00948985/document; https://hal.science/hal-00948985/file/article_final_openhart_rewied_v2.pdf
Verfügbarkeit: https://hal.science/hal-00948985
https://hal.science/hal-00948985/document
https://hal.science/hal-00948985/file/article_final_openhart_rewied_v2.pdf
Rights: info:eu-repo/semantics/OpenAccess
Dokumentencode: edsbas.E41036F1
Datenbank: BASE
Beschreibung
Abstract:International audience ; This article is a description of the two systems proposed for the recognition of Arabic handwritten text lines and for the automatic translation of text-line and sentence images into English text. The recognition systems are based on HMMs (Hidden Markov Models) and BLSTMs (bi-directional long short term memory) recurrent networks. Two SMT (Statistical Machine Translation) systems based on MOSES [1] were built for the evaluation system: one on text-line translation and one for sentence translation.