Secret Key Cryptosystem based on Non-Systematic Polar Codes

Uloženo v:
Podrobná bibliografie
Název: Secret Key Cryptosystem based on Non-Systematic Polar Codes
Autoři: Reza Hooshmand
Přispěvatelé: The Pennsylvania State University CiteSeerX Archives
Zdroj: https://eprint.iacr.org/2013/682.pdf.
Sbírka: CiteSeerX
Témata: Code based cryptosystem, Polar
Popis: ˗ Polar codes are provably capacity achieving linear block codes. The generator matrix of these codes is specified by knowing the parameters of transmission channel, length and dimension of the used code. On the other hand, for the cryptosystems based on general decoding problem (i.e. code based cryptosystems), the generator matrix of the applied code should be properly hidden from the attacker. Moreover, in the computational security, it is assumed that an attacker with restricted processing power has unlimited access to transmission media. Thus, an attacker can construct the generator matrix of polar codes, especially for Binary Erasure Channel on which this matrix can be efficiently specified. In this paper, we introduce a novel method to hide the generator matrix of polar codes in such a way that an attacker cannot construct it in polynomial time even by knowledge of the channel parameters, dimension and length of the used code. By the help of this method, a secret key cryptosystem based on nonsystematic polar codes over Binary Erasure Channel is proposed which provides both data security and reliability in one process simultaneously. In fact, the main goal of this research is to achieve the acceptable level of security and reliability by taking advantage of the interesting properties of polar codes. The proposed scheme resists against the typical attacks on the cryptosystems based on error correcting codes. Also, by employing some efficient methods, the key length of our scheme is decreased compared to Rao-Nam secret key cryptosystem. Moreover, our scheme benefits from high code rate, proper error performance, faster processing and efficient implementation.
Druh dokumentu: text
Popis souboru: application/pdf
Jazyk: English
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.400.5547
Dostupnost: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.400.5547
Rights: Metadata may be used without restrictions as long as the oai identifier remains attached to it.
Přístupové číslo: edsbas.E0138462
Databáze: BASE
Popis
Abstrakt:˗ Polar codes are provably capacity achieving linear block codes. The generator matrix of these codes is specified by knowing the parameters of transmission channel, length and dimension of the used code. On the other hand, for the cryptosystems based on general decoding problem (i.e. code based cryptosystems), the generator matrix of the applied code should be properly hidden from the attacker. Moreover, in the computational security, it is assumed that an attacker with restricted processing power has unlimited access to transmission media. Thus, an attacker can construct the generator matrix of polar codes, especially for Binary Erasure Channel on which this matrix can be efficiently specified. In this paper, we introduce a novel method to hide the generator matrix of polar codes in such a way that an attacker cannot construct it in polynomial time even by knowledge of the channel parameters, dimension and length of the used code. By the help of this method, a secret key cryptosystem based on nonsystematic polar codes over Binary Erasure Channel is proposed which provides both data security and reliability in one process simultaneously. In fact, the main goal of this research is to achieve the acceptable level of security and reliability by taking advantage of the interesting properties of polar codes. The proposed scheme resists against the typical attacks on the cryptosystems based on error correcting codes. Also, by employing some efficient methods, the key length of our scheme is decreased compared to Rao-Nam secret key cryptosystem. Moreover, our scheme benefits from high code rate, proper error performance, faster processing and efficient implementation.