Ηλεκτρονική μάθηση και αξιολόγηση στην εκπαίδευση μηχανικών: καινοτόμες προσεγγίσεις μέσω τεχνητής νοημοσύνης και εξόρυξης εκπαιδευτικών δεδομένων ; E-learning and e-assesment in engineering education: innovative approaches through artificial intelligence and educational data mining
Uloženo v:
| Název: | Ηλεκτρονική μάθηση και αξιολόγηση στην εκπαίδευση μηχανικών: καινοτόμες προσεγγίσεις μέσω τεχνητής νοημοσύνης και εξόρυξης εκπαιδευτικών δεδομένων ; E-learning and e-assesment in engineering education: innovative approaches through artificial intelligence and educational data mining |
|---|---|
| Autoři: | Charitopoulos, Angelos, Χαριτόπουλος, Άγγελος |
| Informace o vydavateli: | Democritus University of Thrace (DUTH) Δημοκρίτειο Πανεπιστήμιο Θράκης (ΔΠΘ) |
| Rok vydání: | 2025 |
| Sbírka: | National Archive of PhD Theses (National Documentation Centre Greece) |
| Témata: | Ηλεκτρονική μάθηση, Ηλεκτρονική αξιολόγηση, Εκπαίδευση μηχανικών, Σύστημα Διαχείρισης Μάθησης moodle, Soft Computing, Αλγόριθμοι μηχανικής μάθησης, Τεχνητά νευρωνικά δίκτυα, Εξόρυξη Εκπαιδευτικών Δεδομένων, Εξόρυξη Εκπαιδευτικού Κειμένου, Αλγόριθμος Latent Dirichlet Allocation, E-learning, e-assessment, Engineering education, LMS moodle, Machine learning algorithms, Artificial neural networks, Educational data mining, Educational Text Mining, Latent Dirichlet Allocation Algorithm, Επιστήμη Ηλεκτρολόγου Μηχανικού, Ηλεκτρονικού Μηχανικού, Μηχανικού Η/Υ, Επιστήμες Μηχανικού και Τεχνολογία, Ηλεκτρική και Ηλεκτρονική μηχανική, Electrical Engineering, Electronic Engineering, Information Engineering, Engineering and Technology, Electrical and Electronic Engineering |
| Popis: | This PhD thesis examines the affordances and opportunities that digital educational technologies offer for higher quality and more effective education, with emphasis on the introduction and utilization of Artificial Intelligence (AI) and Machine Learning (ML) methods and algorithms. The thesis focuses on higher education, with a specific, though not exclusive, interest in engineering education. First, the use of AI/ML methods in the field of educational technologies is explored through a literature review. On the basis of results of this review, the thesis focuses on specific educational problems. To address these problems, experimental educational activities are designed, developed and evaluated using real data. Finally, the thesis concludes by suggesting directions for future research. From the point of view of the AI/ML algorithms selected and used in the thesis, the following can be distinguished (a) data mining algorithms, which analyse educational data in their more classical form (numerical, quantitative, time stamps, student-platform interaction event counts, user activity counts, etc.) and (b) text mining algorithms, which analyse educational texts (of sufficient length; not short texts such as social network posts) based on Natural Language Processing (NLP) methods. The thesis consists of seven chapters. The first chapter presents the evolution of e-learning and e-assessment, the basic learning theories (behaviourism, constructivism, socio-cultural theories) and the platforms that support e-learning and e-assessment, such as Moodle and Massive Open Online Courses (MOOCs). It also examines the advantages, disadvantages and challenges of e-learning and e-assessment. The second chapter reviews the international literature on the use of Educational Data Mining (EDM) and Learning Analytics (LA) methods in e-learning and e-assessment. The algorithms of the broader family of Soft Computing, used for educational data analysis, are reviewed, along with research trends and future challenges in the field. Chapter ... |
| Druh dokumentu: | doctoral or postdoctoral thesis |
| Jazyk: | Greek, Modern (1453-) |
| Relation: | https://hdl.handle.net/10442/hedi/59341 |
| DOI: | 10.12681/eadd/59341 |
| Dostupnost: | https://hdl.handle.net/10442/hedi/59341 https://doi.org/10.12681/eadd/59341 |
| Přístupové číslo: | edsbas.DC133177 |
| Databáze: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://hdl.handle.net/10442/hedi/59341# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Charitopoulos%20A Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.DC133177 RelevancyScore: 861 AccessLevel: 3 PubType: Dissertation/ Thesis PubTypeId: dissertation PreciseRelevancyScore: 861.3056640625 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Ηλεκτρονική μάθηση και αξιολόγηση στην εκπαίδευση μηχανικών: καινοτόμες προσεγγίσεις μέσω τεχνητής νοημοσύνης και εξόρυξης εκπαιδευτικών δεδομένων ; E-learning and e-assesment in engineering education: innovative approaches through artificial intelligence and educational data mining – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Charitopoulos%2C+Angelos%22">Charitopoulos, Angelos</searchLink><br /><searchLink fieldCode="AR" term="%22Χαριτόπουλος%2C+Άγγελος%22">Χαριτόπουλος, Άγγελος</searchLink> – Name: Publisher Label: Publisher Information Group: PubInfo Data: Democritus University of Thrace (DUTH)<br />Δημοκρίτειο Πανεπιστήμιο Θράκης (ΔΠΘ) – Name: DatePubCY Label: Publication Year Group: Date Data: 2025 – Name: Subset Label: Collection Group: HoldingsInfo Data: National Archive of PhD Theses (National Documentation Centre Greece) – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Ηλεκτρονική+μάθηση%22">Ηλεκτρονική μάθηση</searchLink><br /><searchLink fieldCode="DE" term="%22Ηλεκτρονική+αξιολόγηση%22">Ηλεκτρονική αξιολόγηση</searchLink><br /><searchLink fieldCode="DE" term="%22Εκπαίδευση+μηχανικών%22">Εκπαίδευση μηχανικών</searchLink><br /><searchLink fieldCode="DE" term="%22Σύστημα+Διαχείρισης+Μάθησης+moodle%22">Σύστημα Διαχείρισης Μάθησης moodle</searchLink><br /><searchLink fieldCode="DE" term="%22Soft+Computing%22">Soft Computing</searchLink><br /><searchLink fieldCode="DE" term="%22Αλγόριθμοι+μηχανικής+μάθησης%22">Αλγόριθμοι μηχανικής μάθησης</searchLink><br /><searchLink fieldCode="DE" term="%22Τεχνητά+νευρωνικά+δίκτυα%22">Τεχνητά νευρωνικά δίκτυα</searchLink><br /><searchLink fieldCode="DE" term="%22Εξόρυξη+Εκπαιδευτικών+Δεδομένων%22">Εξόρυξη Εκπαιδευτικών Δεδομένων</searchLink><br /><searchLink fieldCode="DE" term="%22Εξόρυξη+Εκπαιδευτικού+Κειμένου%22">Εξόρυξη Εκπαιδευτικού Κειμένου</searchLink><br /><searchLink fieldCode="DE" term="%22Αλγόριθμος+Latent+Dirichlet+Allocation%22">Αλγόριθμος Latent Dirichlet Allocation</searchLink><br /><searchLink fieldCode="DE" term="%22E-learning%22">E-learning</searchLink><br /><searchLink fieldCode="DE" term="%22e-assessment%22">e-assessment</searchLink><br /><searchLink fieldCode="DE" term="%22Engineering+education%22">Engineering education</searchLink><br /><searchLink fieldCode="DE" term="%22LMS+moodle%22">LMS moodle</searchLink><br /><searchLink fieldCode="DE" term="%22Machine+learning+algorithms%22">Machine learning algorithms</searchLink><br /><searchLink fieldCode="DE" term="%22Artificial+neural+networks%22">Artificial neural networks</searchLink><br /><searchLink fieldCode="DE" term="%22Educational+data+mining%22">Educational data mining</searchLink><br /><searchLink fieldCode="DE" term="%22Educational+Text+Mining%22">Educational Text Mining</searchLink><br /><searchLink fieldCode="DE" term="%22Latent+Dirichlet+Allocation+Algorithm%22">Latent Dirichlet Allocation Algorithm</searchLink><br /><searchLink fieldCode="DE" term="%22Επιστήμη+Ηλεκτρολόγου+Μηχανικού%22">Επιστήμη Ηλεκτρολόγου Μηχανικού</searchLink><br /><searchLink fieldCode="DE" term="%22Ηλεκτρονικού+Μηχανικού%22">Ηλεκτρονικού Μηχανικού</searchLink><br /><searchLink fieldCode="DE" term="%22Μηχανικού+Η%2FΥ%22">Μηχανικού Η/Υ</searchLink><br /><searchLink fieldCode="DE" term="%22Επιστήμες+Μηχανικού+και+Τεχνολογία%22">Επιστήμες Μηχανικού και Τεχνολογία</searchLink><br /><searchLink fieldCode="DE" term="%22Ηλεκτρική+και+Ηλεκτρονική+μηχανική%22">Ηλεκτρική και Ηλεκτρονική μηχανική</searchLink><br /><searchLink fieldCode="DE" term="%22Electrical+Engineering%22">Electrical Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Electronic+Engineering%22">Electronic Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Information+Engineering%22">Information Engineering</searchLink><br /><searchLink fieldCode="DE" term="%22Engineering+and+Technology%22">Engineering and Technology</searchLink><br /><searchLink fieldCode="DE" term="%22Electrical+and+Electronic+Engineering%22">Electrical and Electronic Engineering</searchLink> – Name: Abstract Label: Description Group: Ab Data: This PhD thesis examines the affordances and opportunities that digital educational technologies offer for higher quality and more effective education, with emphasis on the introduction and utilization of Artificial Intelligence (AI) and Machine Learning (ML) methods and algorithms. The thesis focuses on higher education, with a specific, though not exclusive, interest in engineering education. First, the use of AI/ML methods in the field of educational technologies is explored through a literature review. On the basis of results of this review, the thesis focuses on specific educational problems. To address these problems, experimental educational activities are designed, developed and evaluated using real data. Finally, the thesis concludes by suggesting directions for future research. From the point of view of the AI/ML algorithms selected and used in the thesis, the following can be distinguished (a) data mining algorithms, which analyse educational data in their more classical form (numerical, quantitative, time stamps, student-platform interaction event counts, user activity counts, etc.) and (b) text mining algorithms, which analyse educational texts (of sufficient length; not short texts such as social network posts) based on Natural Language Processing (NLP) methods. The thesis consists of seven chapters. The first chapter presents the evolution of e-learning and e-assessment, the basic learning theories (behaviourism, constructivism, socio-cultural theories) and the platforms that support e-learning and e-assessment, such as Moodle and Massive Open Online Courses (MOOCs). It also examines the advantages, disadvantages and challenges of e-learning and e-assessment. The second chapter reviews the international literature on the use of Educational Data Mining (EDM) and Learning Analytics (LA) methods in e-learning and e-assessment. The algorithms of the broader family of Soft Computing, used for educational data analysis, are reviewed, along with research trends and future challenges in the field. Chapter ... – Name: TypeDocument Label: Document Type Group: TypDoc Data: doctoral or postdoctoral thesis – Name: Language Label: Language Group: Lang Data: Greek, Modern (1453-) – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://hdl.handle.net/10442/hedi/59341 – Name: DOI Label: DOI Group: ID Data: 10.12681/eadd/59341 – Name: URL Label: Availability Group: URL Data: https://hdl.handle.net/10442/hedi/59341<br />https://doi.org/10.12681/eadd/59341 – Name: AN Label: Accession Number Group: ID Data: edsbas.DC133177 |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.DC133177 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.12681/eadd/59341 Languages: – Text: Greek, Modern (1453-) Subjects: – SubjectFull: Ηλεκτρονική μάθηση Type: general – SubjectFull: Ηλεκτρονική αξιολόγηση Type: general – SubjectFull: Εκπαίδευση μηχανικών Type: general – SubjectFull: Σύστημα Διαχείρισης Μάθησης moodle Type: general – SubjectFull: Soft Computing Type: general – SubjectFull: Αλγόριθμοι μηχανικής μάθησης Type: general – SubjectFull: Τεχνητά νευρωνικά δίκτυα Type: general – SubjectFull: Εξόρυξη Εκπαιδευτικών Δεδομένων Type: general – SubjectFull: Εξόρυξη Εκπαιδευτικού Κειμένου Type: general – SubjectFull: Αλγόριθμος Latent Dirichlet Allocation Type: general – SubjectFull: E-learning Type: general – SubjectFull: e-assessment Type: general – SubjectFull: Engineering education Type: general – SubjectFull: LMS moodle Type: general – SubjectFull: Machine learning algorithms Type: general – SubjectFull: Artificial neural networks Type: general – SubjectFull: Educational data mining Type: general – SubjectFull: Educational Text Mining Type: general – SubjectFull: Latent Dirichlet Allocation Algorithm Type: general – SubjectFull: Επιστήμη Ηλεκτρολόγου Μηχανικού Type: general – SubjectFull: Ηλεκτρονικού Μηχανικού Type: general – SubjectFull: Μηχανικού Η/Υ Type: general – SubjectFull: Επιστήμες Μηχανικού και Τεχνολογία Type: general – SubjectFull: Ηλεκτρική και Ηλεκτρονική μηχανική Type: general – SubjectFull: Electrical Engineering Type: general – SubjectFull: Electronic Engineering Type: general – SubjectFull: Information Engineering Type: general – SubjectFull: Engineering and Technology Type: general – SubjectFull: Electrical and Electronic Engineering Type: general Titles: – TitleFull: Ηλεκτρονική μάθηση και αξιολόγηση στην εκπαίδευση μηχανικών: καινοτόμες προσεγγίσεις μέσω τεχνητής νοημοσύνης και εξόρυξης εκπαιδευτικών δεδομένων ; E-learning and e-assesment in engineering education: innovative approaches through artificial intelligence and educational data mining Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Charitopoulos, Angelos – PersonEntity: Name: NameFull: Χαριτόπουλος, Άγγελος IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-locals Value: edsbas |
| ResultId | 1 |
Nájsť tento článok vo Web of Science