Bayesian Cramér-Rao Lower Bound for Magnetic Field-Based Localization

Saved in:
Bibliographic Details
Title: Bayesian Cramér-Rao Lower Bound for Magnetic Field-Based Localization
Authors: Siebler, Benjamin, Sand, Stephan, Hanebeck, Uwe D.
Source: IEEE Access, 10, 123080–123093 ; ISSN: 2169-3536
Publisher Information: Institute of Electrical and Electronics Engineers
Publication Year: 2022
Collection: KITopen (Karlsruhe Institute of Technologie)
Subject Terms: Bayesian Cramér-Rao lower bound, finger-printing, Gaussian process, indoor localization, magnetic field-based localization, particle filter, ddc:004, DATA processing & computer science, info:eu-repo/classification/ddc/004
Description: In this paper, we show how to analyze the achievable position accuracy of magnetic localization based on Bayesian Cramér-Rao lower bounds and how to account for deterministic inputs in the bound. The derivation of the bound requires an analytical model, e.g., a map or database, that links the position that is to be estimated to the corresponding magnetic field value. Unfortunately, finding an analytical model from the laws of physics is not feasible due to the complexity of the involved differential equations and the required knowledge about the environment. In this paper, we therefore use a Gaussian process (GP) that approximates the true analytical model based on training data. The GP ensures a smooth, differentiable likelihood and allows a strict Bayesian treatment of the estimation problem. Based on a novel set of measurements recorded in an indoor environment, the bound is evaluated for different sensor heights and is compared to the mean squared error of a particle filter. Furthermore, the bound is calculated for the case when only the magnetic magnitude is used for positioning and the case when the whole vector field is considered. For both cases, the resulting position bound is below 10cm indicating an high potential accuracy of magnetic localization.
Document Type: article in journal/newspaper
File Description: application/pdf
Language: English
Relation: info:eu-repo/semantics/altIdentifier/wos/000892887400001; info:eu-repo/semantics/altIdentifier/issn/2169-3536; https://publikationen.bibliothek.kit.edu/1000154188; https://publikationen.bibliothek.kit.edu/1000154188/149916208; https://doi.org/10.5445/IR/1000154188
DOI: 10.5445/IR/1000154188
Availability: https://publikationen.bibliothek.kit.edu/1000154188
https://publikationen.bibliothek.kit.edu/1000154188/149916208
https://doi.org/10.5445/IR/1000154188
Rights: https://creativecommons.org/licenses/by/4.0/deed.de ; info:eu-repo/semantics/openAccess
Accession Number: edsbas.CD6FDBAE
Database: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://publikationen.bibliothek.kit.edu/1000154188#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Siebler%20B
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.CD6FDBAE
RelevancyScore: 925
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 925.000732421875
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Bayesian Cramér-Rao Lower Bound for Magnetic Field-Based Localization
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Siebler%2C+Benjamin%22">Siebler, Benjamin</searchLink><br /><searchLink fieldCode="AR" term="%22Sand%2C+Stephan%22">Sand, Stephan</searchLink><br /><searchLink fieldCode="AR" term="%22Hanebeck%2C+Uwe+D%2E%22">Hanebeck, Uwe D.</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: IEEE Access, 10, 123080–123093 ; ISSN: 2169-3536
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Institute of Electrical and Electronics Engineers
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2022
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: KITopen (Karlsruhe Institute of Technologie)
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Bayesian+Cramér-Rao+lower+bound%22">Bayesian Cramér-Rao lower bound</searchLink><br /><searchLink fieldCode="DE" term="%22finger-printing%22">finger-printing</searchLink><br /><searchLink fieldCode="DE" term="%22Gaussian+process%22">Gaussian process</searchLink><br /><searchLink fieldCode="DE" term="%22indoor+localization%22">indoor localization</searchLink><br /><searchLink fieldCode="DE" term="%22magnetic+field-based+localization%22">magnetic field-based localization</searchLink><br /><searchLink fieldCode="DE" term="%22particle+filter%22">particle filter</searchLink><br /><searchLink fieldCode="DE" term="%22ddc%3A004%22">ddc:004</searchLink><br /><searchLink fieldCode="DE" term="%22DATA+processing+%26+computer+science%22">DATA processing & computer science</searchLink><br /><searchLink fieldCode="DE" term="%22info%3Aeu-repo%2Fclassification%2Fddc%2F004%22">info:eu-repo/classification/ddc/004</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: In this paper, we show how to analyze the achievable position accuracy of magnetic localization based on Bayesian Cramér-Rao lower bounds and how to account for deterministic inputs in the bound. The derivation of the bound requires an analytical model, e.g., a map or database, that links the position that is to be estimated to the corresponding magnetic field value. Unfortunately, finding an analytical model from the laws of physics is not feasible due to the complexity of the involved differential equations and the required knowledge about the environment. In this paper, we therefore use a Gaussian process (GP) that approximates the true analytical model based on training data. The GP ensures a smooth, differentiable likelihood and allows a strict Bayesian treatment of the estimation problem. Based on a novel set of measurements recorded in an indoor environment, the bound is evaluated for different sensor heights and is compared to the mean squared error of a particle filter. Furthermore, the bound is calculated for the case when only the magnetic magnitude is used for positioning and the case when the whole vector field is considered. For both cases, the resulting position bound is below 10cm indicating an high potential accuracy of magnetic localization.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article in journal/newspaper
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: application/pdf
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: info:eu-repo/semantics/altIdentifier/wos/000892887400001; info:eu-repo/semantics/altIdentifier/issn/2169-3536; https://publikationen.bibliothek.kit.edu/1000154188; https://publikationen.bibliothek.kit.edu/1000154188/149916208; https://doi.org/10.5445/IR/1000154188
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.5445/IR/1000154188
– Name: URL
  Label: Availability
  Group: URL
  Data: https://publikationen.bibliothek.kit.edu/1000154188<br />https://publikationen.bibliothek.kit.edu/1000154188/149916208<br />https://doi.org/10.5445/IR/1000154188
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: https://creativecommons.org/licenses/by/4.0/deed.de ; info:eu-repo/semantics/openAccess
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.CD6FDBAE
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.CD6FDBAE
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.5445/IR/1000154188
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Bayesian Cramér-Rao lower bound
        Type: general
      – SubjectFull: finger-printing
        Type: general
      – SubjectFull: Gaussian process
        Type: general
      – SubjectFull: indoor localization
        Type: general
      – SubjectFull: magnetic field-based localization
        Type: general
      – SubjectFull: particle filter
        Type: general
      – SubjectFull: ddc:004
        Type: general
      – SubjectFull: DATA processing & computer science
        Type: general
      – SubjectFull: info:eu-repo/classification/ddc/004
        Type: general
    Titles:
      – TitleFull: Bayesian Cramér-Rao Lower Bound for Magnetic Field-Based Localization
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Siebler, Benjamin
      – PersonEntity:
          Name:
            NameFull: Sand, Stephan
      – PersonEntity:
          Name:
            NameFull: Hanebeck, Uwe D.
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2022
          Identifiers:
            – Type: issn-locals
              Value: edsbas
            – Type: issn-locals
              Value: edsbas.oa
          Titles:
            – TitleFull: IEEE Access, 10, 123080–123093 ; ISSN: 2169-3536
              Type: main
ResultId 1