Minimal-time nonlinear control via semi-infinite programming
Gespeichert in:
| Titel: | Minimal-time nonlinear control via semi-infinite programming |
|---|---|
| Autoren: | Oustry, Antoine, Tacchi, Matteo |
| Weitere Verfasser: | Optimization at LIX (OptimiX), Laboratoire d'informatique de l'École polytechnique Palaiseau (LIX), École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS), École nationale des ponts et chaussées (ENPC), GIPSA - Modelling and Optimal Decision for Uncertain Systems (GIPSA-MODUS), GIPSA Pôle Automatique et Diagnostic (GIPSA-PAD), Grenoble Images Parole Signal Automatique (GIPSA-lab), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP), Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab), Université Grenoble Alpes (UGA) |
| Quelle: | https://hal.science/hal-04145402 ; 2025. |
| Verlagsinformationen: | CCSD |
| Publikationsjahr: | 2025 |
| Bestand: | Université Grenoble Alpes: HAL |
| Schlagwörter: | Nonlinear control, Minimal time control, Weak formulation, Semi-infinite programming, [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] |
| Beschreibung: | We address the problem of computing a control for a time-dependent nonlinear system to reach a target set in a minimal time. To solve this minimal time control problem, we introduce a hierarchy of linear semi-infinite programs, the values of which converge to the value of the control problem. These semi-infinite programs are increasing restrictions of the dual of the nonlinear control problem, which is a maximization problem over the subsolutions of the Hamilton-Jacobi-Bellman (HJB) equation. Our approach is compatible with generic dynamical systems and state constraints. Specifically, we use an oracle that, for a given differentiable function, returns a point at which the function violates the HJB inequality. We solve the semi-infinite programs using a classical convex optimization algorithm with a convergence rate of O(1/k), where k is the number of calls to the oracle. This algorithm yields subsolutions of the HJB equation that approximate the value function and provide a lower bound on the optimal time. We study the closed-loop control built on the obtained approximate value functions, and we give theoretical guarantees on its performance depending on the approximation error for the value function. We show promising numerical results for three non-polynomial systems with up to 6 state variables and 5 control variables. |
| Publikationsart: | report |
| Sprache: | English |
| Relation: | info:eu-repo/semantics/altIdentifier/arxiv/2307.00857; ARXIV: 2307.00857 |
| Verfügbarkeit: | https://hal.science/hal-04145402 https://hal.science/hal-04145402v2/document https://hal.science/hal-04145402v2/file/oustry_tacchi_mintimecontrol_230706.pdf |
| Rights: | http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess |
| Dokumentencode: | edsbas.CD32D3BC |
| Datenbank: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://hal.science/hal-04145402# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Oustry%20A Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.CD32D3BC RelevancyScore: 994 AccessLevel: 3 PubType: Report PubTypeId: report PreciseRelevancyScore: 994.3056640625 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Minimal-time nonlinear control via semi-infinite programming – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Oustry%2C+Antoine%22">Oustry, Antoine</searchLink><br /><searchLink fieldCode="AR" term="%22Tacchi%2C+Matteo%22">Tacchi, Matteo</searchLink> – Name: Author Label: Contributors Group: Au Data: Optimization at LIX (OptimiX)<br />Laboratoire d'informatique de l'École polytechnique Palaiseau (LIX)<br />École polytechnique (X)<br />Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)<br />Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)<br />École nationale des ponts et chaussées (ENPC)<br />GIPSA - Modelling and Optimal Decision for Uncertain Systems (GIPSA-MODUS)<br />GIPSA Pôle Automatique et Diagnostic (GIPSA-PAD)<br />Grenoble Images Parole Signal Automatique (GIPSA-lab)<br />Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)<br />Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)<br />Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab)<br />Université Grenoble Alpes (UGA) – Name: TitleSource Label: Source Group: Src Data: <i>https://hal.science/hal-04145402 ; 2025</i>. – Name: Publisher Label: Publisher Information Group: PubInfo Data: CCSD – Name: DatePubCY Label: Publication Year Group: Date Data: 2025 – Name: Subset Label: Collection Group: HoldingsInfo Data: Université Grenoble Alpes: HAL – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Nonlinear+control%22">Nonlinear control</searchLink><br /><searchLink fieldCode="DE" term="%22Minimal+time+control%22">Minimal time control</searchLink><br /><searchLink fieldCode="DE" term="%22Weak+formulation%22">Weak formulation</searchLink><br /><searchLink fieldCode="DE" term="%22Semi-infinite+programming%22">Semi-infinite programming</searchLink><br /><searchLink fieldCode="DE" term="%22[MATH%2EMATH-OC]Mathematics+[math]%2FOptimization+and+Control+[math%2EOC]%22">[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]</searchLink> – Name: Abstract Label: Description Group: Ab Data: We address the problem of computing a control for a time-dependent nonlinear system to reach a target set in a minimal time. To solve this minimal time control problem, we introduce a hierarchy of linear semi-infinite programs, the values of which converge to the value of the control problem. These semi-infinite programs are increasing restrictions of the dual of the nonlinear control problem, which is a maximization problem over the subsolutions of the Hamilton-Jacobi-Bellman (HJB) equation. Our approach is compatible with generic dynamical systems and state constraints. Specifically, we use an oracle that, for a given differentiable function, returns a point at which the function violates the HJB inequality. We solve the semi-infinite programs using a classical convex optimization algorithm with a convergence rate of O(1/k), where k is the number of calls to the oracle. This algorithm yields subsolutions of the HJB equation that approximate the value function and provide a lower bound on the optimal time. We study the closed-loop control built on the obtained approximate value functions, and we give theoretical guarantees on its performance depending on the approximation error for the value function. We show promising numerical results for three non-polynomial systems with up to 6 state variables and 5 control variables. – Name: TypeDocument Label: Document Type Group: TypDoc Data: report – Name: Language Label: Language Group: Lang Data: English – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: info:eu-repo/semantics/altIdentifier/arxiv/2307.00857; ARXIV: 2307.00857 – Name: URL Label: Availability Group: URL Data: https://hal.science/hal-04145402<br />https://hal.science/hal-04145402v2/document<br />https://hal.science/hal-04145402v2/file/oustry_tacchi_mintimecontrol_230706.pdf – Name: Copyright Label: Rights Group: Cpyrght Data: http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess – Name: AN Label: Accession Number Group: ID Data: edsbas.CD32D3BC |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.CD32D3BC |
| RecordInfo | BibRecord: BibEntity: Languages: – Text: English Subjects: – SubjectFull: Nonlinear control Type: general – SubjectFull: Minimal time control Type: general – SubjectFull: Weak formulation Type: general – SubjectFull: Semi-infinite programming Type: general – SubjectFull: [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] Type: general Titles: – TitleFull: Minimal-time nonlinear control via semi-infinite programming Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Oustry, Antoine – PersonEntity: Name: NameFull: Tacchi, Matteo – PersonEntity: Name: NameFull: Optimization at LIX (OptimiX) – PersonEntity: Name: NameFull: Laboratoire d'informatique de l'École polytechnique Palaiseau (LIX) – PersonEntity: Name: NameFull: École polytechnique (X) – PersonEntity: Name: NameFull: Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X) – PersonEntity: Name: NameFull: Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS) – PersonEntity: Name: NameFull: École nationale des ponts et chaussées (ENPC) – PersonEntity: Name: NameFull: GIPSA - Modelling and Optimal Decision for Uncertain Systems (GIPSA-MODUS) – PersonEntity: Name: NameFull: GIPSA Pôle Automatique et Diagnostic (GIPSA-PAD) – PersonEntity: Name: NameFull: Grenoble Images Parole Signal Automatique (GIPSA-lab) – PersonEntity: Name: NameFull: Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP) – PersonEntity: Name: NameFull: Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP) – PersonEntity: Name: NameFull: Université Grenoble Alpes (UGA)-Grenoble Images Parole Signal Automatique (GIPSA-lab) – PersonEntity: Name: NameFull: Université Grenoble Alpes (UGA) IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-locals Value: edsbas – Type: issn-locals Value: edsbas.oa Titles: – TitleFull: https://hal.science/hal-04145402 ; 2025 Type: main |
| ResultId | 1 |
Nájsť tento článok vo Web of Science