BRAIN TUMOR CLASSIFICATION USING DATA MINING ALGORITHMS
Saved in:
| Title: | BRAIN TUMOR CLASSIFICATION USING DATA MINING ALGORITHMS |
|---|---|
| Authors: | Kalyani A. Bhawar*, Prof. Ajay S. Chhajed |
| Publisher Information: | Zenodo |
| Publication Year: | 2016 |
| Collection: | Zenodo |
| Subject Terms: | MRI, Decision Tree, CART and Random tree Algorithm |
| Description: | The classification of brain tumor in the magnetic resonance imaging (MRI) is very important for detecting the existence and outlines of tumors. In this paper, an algorithm about brain tumor classification is based on the metabolite values of brain MRI image is presented. Our goal is to calculate vector patterns from the metabolite values and classify the tumors automatically .Decision Trees are considered to be one of the most popular approaches for representing classifiers. Statistics, machine learning, pattern recognition, and Data Mining have dealt with the issue of growing a decision tree from available data. The purpose of this work is to present an updated survey of current methods for constructing decision tree for classifying brain tumors. The main focus is on solving the cancer classification problem using single decision tree classifiers (CART and Random algorithm). |
| Document Type: | article in journal/newspaper |
| Language: | unknown |
| Relation: | https://zenodo.org/records/165011; oai:zenodo.org:165011; https://doi.org/10.5281/zenodo.165011 |
| DOI: | 10.5281/zenodo.165011 |
| Availability: | https://doi.org/10.5281/zenodo.165011 https://zenodo.org/records/165011 |
| Rights: | Creative Commons Attribution 4.0 International ; cc-by-4.0 ; https://creativecommons.org/licenses/by/4.0/legalcode |
| Accession Number: | edsbas.CC403DF3 |
| Database: | BASE |
| Abstract: | The classification of brain tumor in the magnetic resonance imaging (MRI) is very important for detecting the existence and outlines of tumors. In this paper, an algorithm about brain tumor classification is based on the metabolite values of brain MRI image is presented. Our goal is to calculate vector patterns from the metabolite values and classify the tumors automatically .Decision Trees are considered to be one of the most popular approaches for representing classifiers. Statistics, machine learning, pattern recognition, and Data Mining have dealt with the issue of growing a decision tree from available data. The purpose of this work is to present an updated survey of current methods for constructing decision tree for classifying brain tumors. The main focus is on solving the cancer classification problem using single decision tree classifiers (CART and Random algorithm). |
|---|---|
| DOI: | 10.5281/zenodo.165011 |
Nájsť tento článok vo Web of Science