BRAIN TUMOR CLASSIFICATION USING DATA MINING ALGORITHMS

Uloženo v:
Podrobná bibliografie
Název: BRAIN TUMOR CLASSIFICATION USING DATA MINING ALGORITHMS
Autoři: Kalyani A. Bhawar*, Prof. Ajay S. Chhajed
Informace o vydavateli: Zenodo
Rok vydání: 2016
Sbírka: Zenodo
Témata: MRI, Decision Tree, CART and Random tree Algorithm
Popis: The classification of brain tumor in the magnetic resonance imaging (MRI) is very important for detecting the existence and outlines of tumors. In this paper, an algorithm about brain tumor classification is based on the metabolite values of brain MRI image is presented. Our goal is to calculate vector patterns from the metabolite values and classify the tumors automatically .Decision Trees are considered to be one of the most popular approaches for representing classifiers. Statistics, machine learning, pattern recognition, and Data Mining have dealt with the issue of growing a decision tree from available data. The purpose of this work is to present an updated survey of current methods for constructing decision tree for classifying brain tumors. The main focus is on solving the cancer classification problem using single decision tree classifiers (CART and Random algorithm).
Druh dokumentu: article in journal/newspaper
Jazyk: unknown
Relation: https://zenodo.org/records/165011; oai:zenodo.org:165011; https://doi.org/10.5281/zenodo.165011
DOI: 10.5281/zenodo.165011
Dostupnost: https://doi.org/10.5281/zenodo.165011
https://zenodo.org/records/165011
Rights: Creative Commons Attribution 4.0 International ; cc-by-4.0 ; https://creativecommons.org/licenses/by/4.0/legalcode
Přístupové číslo: edsbas.CC403DF3
Databáze: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.5281/zenodo.165011#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Bhawar%20KA
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.CC403DF3
RelevancyScore: 863
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 863.477478027344
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: BRAIN TUMOR CLASSIFICATION USING DATA MINING ALGORITHMS
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Kalyani+A%2E+Bhawar*%22">Kalyani A. Bhawar*</searchLink><br /><searchLink fieldCode="AR" term="%22Prof%2E+Ajay+S%2E+Chhajed%22">Prof. Ajay S. Chhajed</searchLink>
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Zenodo
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2016
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Zenodo
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22MRI%22">MRI</searchLink><br /><searchLink fieldCode="DE" term="%22Decision+Tree%22">Decision Tree</searchLink><br /><searchLink fieldCode="DE" term="%22CART+and+Random+tree+Algorithm%22">CART and Random tree Algorithm</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: The classification of brain tumor in the magnetic resonance imaging (MRI) is very important for detecting the existence and outlines of tumors. In this paper, an algorithm about brain tumor classification is based on the metabolite values of brain MRI image is presented. Our goal is to calculate vector patterns from the metabolite values and classify the tumors automatically .Decision Trees are considered to be one of the most popular approaches for representing classifiers. Statistics, machine learning, pattern recognition, and Data Mining have dealt with the issue of growing a decision tree from available data. The purpose of this work is to present an updated survey of current methods for constructing decision tree for classifying brain tumors. The main focus is on solving the cancer classification problem using single decision tree classifiers (CART and Random algorithm).
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article in journal/newspaper
– Name: Language
  Label: Language
  Group: Lang
  Data: unknown
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://zenodo.org/records/165011; oai:zenodo.org:165011; https://doi.org/10.5281/zenodo.165011
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.5281/zenodo.165011
– Name: URL
  Label: Availability
  Group: URL
  Data: https://doi.org/10.5281/zenodo.165011<br />https://zenodo.org/records/165011
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: Creative Commons Attribution 4.0 International ; cc-by-4.0 ; https://creativecommons.org/licenses/by/4.0/legalcode
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.CC403DF3
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.CC403DF3
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.5281/zenodo.165011
    Languages:
      – Text: unknown
    Subjects:
      – SubjectFull: MRI
        Type: general
      – SubjectFull: Decision Tree
        Type: general
      – SubjectFull: CART and Random tree Algorithm
        Type: general
    Titles:
      – TitleFull: BRAIN TUMOR CLASSIFICATION USING DATA MINING ALGORITHMS
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Kalyani A. Bhawar*
      – PersonEntity:
          Name:
            NameFull: Prof. Ajay S. Chhajed
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2016
          Identifiers:
            – Type: issn-locals
              Value: edsbas
            – Type: issn-locals
              Value: edsbas.oa
ResultId 1