Real-Time Semantic Indexing for High-Volume Data Streams

Uloženo v:
Podrobná bibliografie
Název: Real-Time Semantic Indexing for High-Volume Data Streams
Autoři: Raj, Yeshwanth, Mahdi, Hassan Mohamed, Abraham, Benjamin Jones, Rama Sree, S, Kiruthika, R, Ugli, Khusainov Ilyos Jamoliddin
Zdroj: Indian Journal of Information Sources and Services; Vol. 15 No. 3 (2025): July-September 2025; 423-431 ; 2231-6094 ; 10.51983/ijiss-2025.IJISS.15.3
Informace o vydavateli: The Research Publication
Rok vydání: 2025
Témata: Real-Time Data Handling, High-Rate Data Stream Processing, Semantic Indexing, Natural Language Understanding, Knowledge Graphs, And Highly Scalable Systems
Popis: Rapidly accumulating high-volume datasets from sources like social media, IoT devices, and the financial market present substantial issues for real-time data processing, storage, and restoration. Such indexing data and traditional search approaches could not maintain the requisite velocity, magnitude, and polymorphism that these databases offer in a conceptually relevant form. This paper proposes a new model for real-time semantic indexing (RTSI). This model proposes enhancing information retrieval and analytic capabilities by incorporating semantics into the indexing process during data ingestion. Contextual meaning is assigned to data items in real time using lightweight natural language processing (NLP), entity recognition, topic modeling, and Knowledge embedding. The distributed architecture, constructed from scalable stream processing engines like Apache Flink or Kafka Streams, provides low-latency operational performance for practical implementations. We implemented the proposed System on multiple high-throughput datasets consisting of news feeds, social media posts, and sensor logs. Experimental results demonstrate that RTSI outperforms conventional search and analytic tasks in terms of real-time relevance and accuracy compared to keyword-based indexing. Additionally, the semantic layer enables context-aware alerting and anomaly detection trend monitoring. The System also has adaptability, supporting the continuous refinement of semantic representations with incoming data. By incorporating semantic techniques into real-time stream indexing, the study's results suggest enhancements to the responsiveness, intelligence, and scalability of data-driven applications, which are increasingly important.
Druh dokumentu: article in journal/newspaper
Popis souboru: application/pdf
Jazyk: English
Relation: https://ojs.trp.org.in/index.php/ijiss/article/view/5283/7845; https://ojs.trp.org.in/index.php/ijiss/article/view/5283
DOI: 10.51983/ijiss-2025.IJISS.15.3.47
Dostupnost: https://ojs.trp.org.in/index.php/ijiss/article/view/5283
https://doi.org/10.51983/ijiss-2025.IJISS.15.3.47
Rights: Copyright (c) 2025 The Research Publication ; https://creativecommons.org/licenses/by-nc-nd/4.0
Přístupové číslo: edsbas.C6FF8D98
Databáze: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://ojs.trp.org.in/index.php/ijiss/article/view/5283#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Raj%20Y
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.C6FF8D98
RelevancyScore: 997
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 996.707214355469
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Real-Time Semantic Indexing for High-Volume Data Streams
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Raj%2C+Yeshwanth%22">Raj, Yeshwanth</searchLink><br /><searchLink fieldCode="AR" term="%22Mahdi%2C+Hassan+Mohamed%22">Mahdi, Hassan Mohamed</searchLink><br /><searchLink fieldCode="AR" term="%22Abraham%2C+Benjamin+Jones%22">Abraham, Benjamin Jones</searchLink><br /><searchLink fieldCode="AR" term="%22Rama+Sree%2C+S%22">Rama Sree, S</searchLink><br /><searchLink fieldCode="AR" term="%22Kiruthika%2C+R%22">Kiruthika, R</searchLink><br /><searchLink fieldCode="AR" term="%22Ugli%2C+Khusainov+Ilyos+Jamoliddin%22">Ugli, Khusainov Ilyos Jamoliddin</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Indian Journal of Information Sources and Services; Vol. 15 No. 3 (2025): July-September 2025; 423-431 ; 2231-6094 ; 10.51983/ijiss-2025.IJISS.15.3
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: The Research Publication
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2025
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Real-Time+Data+Handling%22">Real-Time Data Handling</searchLink><br /><searchLink fieldCode="DE" term="%22High-Rate+Data+Stream+Processing%22">High-Rate Data Stream Processing</searchLink><br /><searchLink fieldCode="DE" term="%22Semantic+Indexing%22">Semantic Indexing</searchLink><br /><searchLink fieldCode="DE" term="%22Natural+Language+Understanding%22">Natural Language Understanding</searchLink><br /><searchLink fieldCode="DE" term="%22Knowledge+Graphs%22">Knowledge Graphs</searchLink><br /><searchLink fieldCode="DE" term="%22And+Highly+Scalable+Systems%22">And Highly Scalable Systems</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Rapidly accumulating high-volume datasets from sources like social media, IoT devices, and the financial market present substantial issues for real-time data processing, storage, and restoration. Such indexing data and traditional search approaches could not maintain the requisite velocity, magnitude, and polymorphism that these databases offer in a conceptually relevant form. This paper proposes a new model for real-time semantic indexing (RTSI). This model proposes enhancing information retrieval and analytic capabilities by incorporating semantics into the indexing process during data ingestion. Contextual meaning is assigned to data items in real time using lightweight natural language processing (NLP), entity recognition, topic modeling, and Knowledge embedding. The distributed architecture, constructed from scalable stream processing engines like Apache Flink or Kafka Streams, provides low-latency operational performance for practical implementations. We implemented the proposed System on multiple high-throughput datasets consisting of news feeds, social media posts, and sensor logs. Experimental results demonstrate that RTSI outperforms conventional search and analytic tasks in terms of real-time relevance and accuracy compared to keyword-based indexing. Additionally, the semantic layer enables context-aware alerting and anomaly detection trend monitoring. The System also has adaptability, supporting the continuous refinement of semantic representations with incoming data. By incorporating semantic techniques into real-time stream indexing, the study's results suggest enhancements to the responsiveness, intelligence, and scalability of data-driven applications, which are increasingly important.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article in journal/newspaper
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: application/pdf
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://ojs.trp.org.in/index.php/ijiss/article/view/5283/7845; https://ojs.trp.org.in/index.php/ijiss/article/view/5283
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.51983/ijiss-2025.IJISS.15.3.47
– Name: URL
  Label: Availability
  Group: URL
  Data: https://ojs.trp.org.in/index.php/ijiss/article/view/5283<br />https://doi.org/10.51983/ijiss-2025.IJISS.15.3.47
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: Copyright (c) 2025 The Research Publication ; https://creativecommons.org/licenses/by-nc-nd/4.0
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.C6FF8D98
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.C6FF8D98
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.51983/ijiss-2025.IJISS.15.3.47
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Real-Time Data Handling
        Type: general
      – SubjectFull: High-Rate Data Stream Processing
        Type: general
      – SubjectFull: Semantic Indexing
        Type: general
      – SubjectFull: Natural Language Understanding
        Type: general
      – SubjectFull: Knowledge Graphs
        Type: general
      – SubjectFull: And Highly Scalable Systems
        Type: general
    Titles:
      – TitleFull: Real-Time Semantic Indexing for High-Volume Data Streams
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Raj, Yeshwanth
      – PersonEntity:
          Name:
            NameFull: Mahdi, Hassan Mohamed
      – PersonEntity:
          Name:
            NameFull: Abraham, Benjamin Jones
      – PersonEntity:
          Name:
            NameFull: Rama Sree, S
      – PersonEntity:
          Name:
            NameFull: Kiruthika, R
      – PersonEntity:
          Name:
            NameFull: Ugli, Khusainov Ilyos Jamoliddin
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-locals
              Value: edsbas
            – Type: issn-locals
              Value: edsbas.oa
          Titles:
            – TitleFull: Indian Journal of Information Sources and Services; Vol. 15 No. 3 (2025): July-September 2025; 423-431 ; 2231-6094 ; 10.51983/ijiss-2025.IJISS.15.3
              Type: main
ResultId 1