Constructive Approximation manuscript No. (will be inserted by the editor) Power Series Kernels

Gespeichert in:
Bibliographische Detailangaben
Titel: Constructive Approximation manuscript No. (will be inserted by the editor) Power Series Kernels
Autoren: Barbara Zwicknagl
Weitere Verfasser: The Pennsylvania State University CiteSeerX Archives
Quelle: http://www.mis.mpg.de/preprints/2006/preprint2006_155.pdf.
Publikationsjahr: 2006
Bestand: CiteSeerX
Schlagwörter: multivariate polynomial approximation, Bernstein theorem, dot prod- uct kernels, reproducing kernel Hilbert spaces, error bounds, convergence orders
Beschreibung: We introduce a class of analytic positive definite multivariate kernels which includes infinite dot product kernels as sometimes used in machine learning, certain new nonlinearly factorizable kernels and a kernel which is closely related to the Gaussian. Each such kernel reproduces in a certain ‘native ‘ Hilbert space of multivariate analytic functions. If functions from this space are interpolated in scattered locations by translates of the kernel, we prove spectral convergence rates of the interpolants and all derivatives. By truncation of the power series of the kernel-based interpolants, we constructively generalize the classical Bernstein theorem concerning polynomial approximation of analytic functions to the multi-variate case. An application to machine learning algorithms is presented.
Publikationsart: text
Dateibeschreibung: application/pdf
Sprache: English
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.5528; http://www.mis.mpg.de/preprints/2006/preprint2006_155.pdf
Verfügbarkeit: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.5528
http://www.mis.mpg.de/preprints/2006/preprint2006_155.pdf
Rights: Metadata may be used without restrictions as long as the oai identifier remains attached to it.
Dokumentencode: edsbas.C6C1A6E3
Datenbank: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.5528#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Zwicknagl%20B
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.C6C1A6E3
RelevancyScore: 836
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 836.004333496094
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Constructive Approximation manuscript No. (will be inserted by the editor) Power Series Kernels
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Barbara+Zwicknagl%22">Barbara Zwicknagl</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: The Pennsylvania State University CiteSeerX Archives
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>http://www.mis.mpg.de/preprints/2006/preprint2006_155.pdf</i>.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2006
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: CiteSeerX
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22multivariate+polynomial+approximation%22">multivariate polynomial approximation</searchLink><br /><searchLink fieldCode="DE" term="%22Bernstein+theorem%22">Bernstein theorem</searchLink><br /><searchLink fieldCode="DE" term="%22dot+prod-+uct+kernels%22">dot prod- uct kernels</searchLink><br /><searchLink fieldCode="DE" term="%22reproducing+kernel+Hilbert+spaces%22">reproducing kernel Hilbert spaces</searchLink><br /><searchLink fieldCode="DE" term="%22error+bounds%22">error bounds</searchLink><br /><searchLink fieldCode="DE" term="%22convergence+orders%22">convergence orders</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: We introduce a class of analytic positive definite multivariate kernels which includes infinite dot product kernels as sometimes used in machine learning, certain new nonlinearly factorizable kernels and a kernel which is closely related to the Gaussian. Each such kernel reproduces in a certain ‘native ‘ Hilbert space of multivariate analytic functions. If functions from this space are interpolated in scattered locations by translates of the kernel, we prove spectral convergence rates of the interpolants and all derivatives. By truncation of the power series of the kernel-based interpolants, we constructively generalize the classical Bernstein theorem concerning polynomial approximation of analytic functions to the multi-variate case. An application to machine learning algorithms is presented.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: text
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: application/pdf
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.5528; http://www.mis.mpg.de/preprints/2006/preprint2006_155.pdf
– Name: URL
  Label: Availability
  Group: URL
  Data: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.5528<br />http://www.mis.mpg.de/preprints/2006/preprint2006_155.pdf
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: Metadata may be used without restrictions as long as the oai identifier remains attached to it.
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.C6C1A6E3
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.C6C1A6E3
RecordInfo BibRecord:
  BibEntity:
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: multivariate polynomial approximation
        Type: general
      – SubjectFull: Bernstein theorem
        Type: general
      – SubjectFull: dot prod- uct kernels
        Type: general
      – SubjectFull: reproducing kernel Hilbert spaces
        Type: general
      – SubjectFull: error bounds
        Type: general
      – SubjectFull: convergence orders
        Type: general
    Titles:
      – TitleFull: Constructive Approximation manuscript No. (will be inserted by the editor) Power Series Kernels
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Barbara Zwicknagl
      – PersonEntity:
          Name:
            NameFull: The Pennsylvania State University CiteSeerX Archives
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2006
          Identifiers:
            – Type: issn-locals
              Value: edsbas
            – Type: issn-locals
              Value: edsbas.oa
          Titles:
            – TitleFull: http://www.mis.mpg.de/preprints/2006/preprint2006_155.pdf
              Type: main
ResultId 1