Constructive Approximation manuscript No. (will be inserted by the editor) Power Series Kernels
Gespeichert in:
| Titel: | Constructive Approximation manuscript No. (will be inserted by the editor) Power Series Kernels |
|---|---|
| Autoren: | Barbara Zwicknagl |
| Weitere Verfasser: | The Pennsylvania State University CiteSeerX Archives |
| Quelle: | http://www.mis.mpg.de/preprints/2006/preprint2006_155.pdf. |
| Publikationsjahr: | 2006 |
| Bestand: | CiteSeerX |
| Schlagwörter: | multivariate polynomial approximation, Bernstein theorem, dot prod- uct kernels, reproducing kernel Hilbert spaces, error bounds, convergence orders |
| Beschreibung: | We introduce a class of analytic positive definite multivariate kernels which includes infinite dot product kernels as sometimes used in machine learning, certain new nonlinearly factorizable kernels and a kernel which is closely related to the Gaussian. Each such kernel reproduces in a certain ‘native ‘ Hilbert space of multivariate analytic functions. If functions from this space are interpolated in scattered locations by translates of the kernel, we prove spectral convergence rates of the interpolants and all derivatives. By truncation of the power series of the kernel-based interpolants, we constructively generalize the classical Bernstein theorem concerning polynomial approximation of analytic functions to the multi-variate case. An application to machine learning algorithms is presented. |
| Publikationsart: | text |
| Dateibeschreibung: | application/pdf |
| Sprache: | English |
| Relation: | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.5528; http://www.mis.mpg.de/preprints/2006/preprint2006_155.pdf |
| Verfügbarkeit: | http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.5528 http://www.mis.mpg.de/preprints/2006/preprint2006_155.pdf |
| Rights: | Metadata may be used without restrictions as long as the oai identifier remains attached to it. |
| Dokumentencode: | edsbas.C6C1A6E3 |
| Datenbank: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.5528# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Zwicknagl%20B Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.C6C1A6E3 RelevancyScore: 836 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 836.004333496094 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Constructive Approximation manuscript No. (will be inserted by the editor) Power Series Kernels – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Barbara+Zwicknagl%22">Barbara Zwicknagl</searchLink> – Name: Author Label: Contributors Group: Au Data: The Pennsylvania State University CiteSeerX Archives – Name: TitleSource Label: Source Group: Src Data: <i>http://www.mis.mpg.de/preprints/2006/preprint2006_155.pdf</i>. – Name: DatePubCY Label: Publication Year Group: Date Data: 2006 – Name: Subset Label: Collection Group: HoldingsInfo Data: CiteSeerX – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22multivariate+polynomial+approximation%22">multivariate polynomial approximation</searchLink><br /><searchLink fieldCode="DE" term="%22Bernstein+theorem%22">Bernstein theorem</searchLink><br /><searchLink fieldCode="DE" term="%22dot+prod-+uct+kernels%22">dot prod- uct kernels</searchLink><br /><searchLink fieldCode="DE" term="%22reproducing+kernel+Hilbert+spaces%22">reproducing kernel Hilbert spaces</searchLink><br /><searchLink fieldCode="DE" term="%22error+bounds%22">error bounds</searchLink><br /><searchLink fieldCode="DE" term="%22convergence+orders%22">convergence orders</searchLink> – Name: Abstract Label: Description Group: Ab Data: We introduce a class of analytic positive definite multivariate kernels which includes infinite dot product kernels as sometimes used in machine learning, certain new nonlinearly factorizable kernels and a kernel which is closely related to the Gaussian. Each such kernel reproduces in a certain ‘native ‘ Hilbert space of multivariate analytic functions. If functions from this space are interpolated in scattered locations by translates of the kernel, we prove spectral convergence rates of the interpolants and all derivatives. By truncation of the power series of the kernel-based interpolants, we constructively generalize the classical Bernstein theorem concerning polynomial approximation of analytic functions to the multi-variate case. An application to machine learning algorithms is presented. – Name: TypeDocument Label: Document Type Group: TypDoc Data: text – Name: Format Label: File Description Group: SrcInfo Data: application/pdf – Name: Language Label: Language Group: Lang Data: English – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.5528; http://www.mis.mpg.de/preprints/2006/preprint2006_155.pdf – Name: URL Label: Availability Group: URL Data: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.86.5528<br />http://www.mis.mpg.de/preprints/2006/preprint2006_155.pdf – Name: Copyright Label: Rights Group: Cpyrght Data: Metadata may be used without restrictions as long as the oai identifier remains attached to it. – Name: AN Label: Accession Number Group: ID Data: edsbas.C6C1A6E3 |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.C6C1A6E3 |
| RecordInfo | BibRecord: BibEntity: Languages: – Text: English Subjects: – SubjectFull: multivariate polynomial approximation Type: general – SubjectFull: Bernstein theorem Type: general – SubjectFull: dot prod- uct kernels Type: general – SubjectFull: reproducing kernel Hilbert spaces Type: general – SubjectFull: error bounds Type: general – SubjectFull: convergence orders Type: general Titles: – TitleFull: Constructive Approximation manuscript No. (will be inserted by the editor) Power Series Kernels Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Barbara Zwicknagl – PersonEntity: Name: NameFull: The Pennsylvania State University CiteSeerX Archives IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2006 Identifiers: – Type: issn-locals Value: edsbas – Type: issn-locals Value: edsbas.oa Titles: – TitleFull: http://www.mis.mpg.de/preprints/2006/preprint2006_155.pdf Type: main |
| ResultId | 1 |
Nájsť tento článok vo Web of Science