Razvoj programskog agenta-igrača za računalnu igru primjenom podržanog učenja ; Development of a software agent-player for a computer game using reinforcement learning
Uloženo v:
| Název: | Razvoj programskog agenta-igrača za računalnu igru primjenom podržanog učenja ; Development of a software agent-player for a computer game using reinforcement learning |
|---|---|
| Autoři: | Tadić, Bartul |
| Přispěvatelé: | Popović, Siniša |
| Informace o vydavateli: | Sveučilište u Zagrebu. Fakultet elektrotehnike i računarstva. University of Zagreb. Faculty of Electrical Engineering and Computing. |
| Rok vydání: | 2023 |
| Sbírka: | Croatian Digital Theses Repository (National and University Library in Zagreb) |
| Témata: | Podržano učenje, ML-Agents Toolkit, strojno učenje, PPO algoritam, duboke neuronske mreže, Unity, Reinforcement learning, machine learning, PPO algorithm, deep neural networks, TEHNIČKE ZNANOSTI. Računarstvo, TECHNICAL SCIENCES. Computing |
| Popis: | Zadnjih godina razvoj u dubokom podržanom učenju uvelike je imao primjenu u računalnim igricama i simulatorima zbog mogućnosti generiranja velikog broja interaktivnih i vizualno bogatih simulacija. U ovom radu, razvijeno je 3D okruženje koristeći pogonski sustav za računalne igre Unity te je opisana uporaba ML-Agents Toolkita za treniranje inteligentnih agenata pomoću gotove PyTorch implementacije algoritma Proximal Policy Optimization (PPO). U radu su uspoređene performanse različitih konfiguracija te opisano uspješno treniranje. Podržanim učenjem, agent je naučio vještine kretanja i istraživanja okoline, izbjegavanje neprijatelja te skupljanja novčića. Također, u radu je pokrivena teorija iza strojnog učenja, podržanog učenja, dubokih neuronskih mreža, algoritma PPO te korištenje programskog alata ML-Agents. ; In the last few years, deep reinforcement learning has found extensive application in computer games and simulators due to ability to generate a large number of interactive and visually-rich simulations. In this paper, a 3D environment is developed using Unity game engine, and the use of the ML-Agents Toolkit for training intelligent agents with a PyTorch implementation of the Proximal Policy Optimization (PPO) algorithm is described. The paper compares the performance of different configurations and discusses successful training outcomes. Through reinforcement learning, the agent has learned skills such as movement, environment exploration, enemy avoidance, and coin collection. Additionally, the paper covers the theory behind machine learning, reinforcement learning, deep neural networks, the PPO algorithm, and the use of ML-Agents Toolkit. |
| Druh dokumentu: | bachelor thesis |
| Popis souboru: | application/pdf |
| Jazyk: | Croatian |
| Relation: | https://zir.nsk.hr/islandora/object/fer:11013; https://urn.nsk.hr/urn:nbn:hr:168:774527; https://repozitorij.unizg.hr/islandora/object/fer:11013; https://repozitorij.unizg.hr/islandora/object/fer:11013/datastream/PDF |
| Dostupnost: | https://zir.nsk.hr/islandora/object/fer:11013 https://urn.nsk.hr/urn:nbn:hr:168:774527 https://repozitorij.unizg.hr/islandora/object/fer:11013 https://repozitorij.unizg.hr/islandora/object/fer:11013/datastream/PDF |
| Rights: | http://rightsstatements.org/vocab/InC/1.0/ ; info:eu-repo/semantics/closedAccess |
| Přístupové číslo: | edsbas.C0C4D7AA |
| Databáze: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://zir.nsk.hr/islandora/object/fer:11013# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Tadi%C4%87%20B Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.C0C4D7AA RelevancyScore: 796 AccessLevel: 3 PubType: Dissertation/ Thesis PubTypeId: dissertation PreciseRelevancyScore: 795.653564453125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Razvoj programskog agenta-igrača za računalnu igru primjenom podržanog učenja ; Development of a software agent-player for a computer game using reinforcement learning – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Tadić%2C+Bartul%22">Tadić, Bartul</searchLink> – Name: Author Label: Contributors Group: Au Data: Popović, Siniša – Name: Publisher Label: Publisher Information Group: PubInfo Data: Sveučilište u Zagrebu. Fakultet elektrotehnike i računarstva.<br />University of Zagreb. Faculty of Electrical Engineering and Computing. – Name: DatePubCY Label: Publication Year Group: Date Data: 2023 – Name: Subset Label: Collection Group: HoldingsInfo Data: Croatian Digital Theses Repository (National and University Library in Zagreb) – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Podržano+učenje%22">Podržano učenje</searchLink><br /><searchLink fieldCode="DE" term="%22ML-Agents+Toolkit%22">ML-Agents Toolkit</searchLink><br /><searchLink fieldCode="DE" term="%22strojno+učenje%22">strojno učenje</searchLink><br /><searchLink fieldCode="DE" term="%22PPO+algoritam%22">PPO algoritam</searchLink><br /><searchLink fieldCode="DE" term="%22duboke+neuronske+mreže%22">duboke neuronske mreže</searchLink><br /><searchLink fieldCode="DE" term="%22Unity%22">Unity</searchLink><br /><searchLink fieldCode="DE" term="%22Reinforcement+learning%22">Reinforcement learning</searchLink><br /><searchLink fieldCode="DE" term="%22machine+learning%22">machine learning</searchLink><br /><searchLink fieldCode="DE" term="%22PPO+algorithm%22">PPO algorithm</searchLink><br /><searchLink fieldCode="DE" term="%22deep+neural+networks%22">deep neural networks</searchLink><br /><searchLink fieldCode="DE" term="%22TEHNIČKE+ZNANOSTI%2E+Računarstvo%22">TEHNIČKE ZNANOSTI. Računarstvo</searchLink><br /><searchLink fieldCode="DE" term="%22TECHNICAL+SCIENCES%2E+Computing%22">TECHNICAL SCIENCES. Computing</searchLink> – Name: Abstract Label: Description Group: Ab Data: Zadnjih godina razvoj u dubokom podržanom učenju uvelike je imao primjenu u računalnim igricama i simulatorima zbog mogućnosti generiranja velikog broja interaktivnih i vizualno bogatih simulacija. U ovom radu, razvijeno je 3D okruženje koristeći pogonski sustav za računalne igre Unity te je opisana uporaba ML-Agents Toolkita za treniranje inteligentnih agenata pomoću gotove PyTorch implementacije algoritma Proximal Policy Optimization (PPO). U radu su uspoređene performanse različitih konfiguracija te opisano uspješno treniranje. Podržanim učenjem, agent je naučio vještine kretanja i istraživanja okoline, izbjegavanje neprijatelja te skupljanja novčića. Također, u radu je pokrivena teorija iza strojnog učenja, podržanog učenja, dubokih neuronskih mreža, algoritma PPO te korištenje programskog alata ML-Agents. ; In the last few years, deep reinforcement learning has found extensive application in computer games and simulators due to ability to generate a large number of interactive and visually-rich simulations. In this paper, a 3D environment is developed using Unity game engine, and the use of the ML-Agents Toolkit for training intelligent agents with a PyTorch implementation of the Proximal Policy Optimization (PPO) algorithm is described. The paper compares the performance of different configurations and discusses successful training outcomes. Through reinforcement learning, the agent has learned skills such as movement, environment exploration, enemy avoidance, and coin collection. Additionally, the paper covers the theory behind machine learning, reinforcement learning, deep neural networks, the PPO algorithm, and the use of ML-Agents Toolkit. – Name: TypeDocument Label: Document Type Group: TypDoc Data: bachelor thesis – Name: Format Label: File Description Group: SrcInfo Data: application/pdf – Name: Language Label: Language Group: Lang Data: Croatian – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://zir.nsk.hr/islandora/object/fer:11013; https://urn.nsk.hr/urn:nbn:hr:168:774527; https://repozitorij.unizg.hr/islandora/object/fer:11013; https://repozitorij.unizg.hr/islandora/object/fer:11013/datastream/PDF – Name: URL Label: Availability Group: URL Data: https://zir.nsk.hr/islandora/object/fer:11013<br />https://urn.nsk.hr/urn:nbn:hr:168:774527<br />https://repozitorij.unizg.hr/islandora/object/fer:11013<br />https://repozitorij.unizg.hr/islandora/object/fer:11013/datastream/PDF – Name: Copyright Label: Rights Group: Cpyrght Data: http://rightsstatements.org/vocab/InC/1.0/ ; info:eu-repo/semantics/closedAccess – Name: AN Label: Accession Number Group: ID Data: edsbas.C0C4D7AA |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.C0C4D7AA |
| RecordInfo | BibRecord: BibEntity: Languages: – Text: Croatian Subjects: – SubjectFull: Podržano učenje Type: general – SubjectFull: ML-Agents Toolkit Type: general – SubjectFull: strojno učenje Type: general – SubjectFull: PPO algoritam Type: general – SubjectFull: duboke neuronske mreže Type: general – SubjectFull: Unity Type: general – SubjectFull: Reinforcement learning Type: general – SubjectFull: machine learning Type: general – SubjectFull: PPO algorithm Type: general – SubjectFull: deep neural networks Type: general – SubjectFull: TEHNIČKE ZNANOSTI. Računarstvo Type: general – SubjectFull: TECHNICAL SCIENCES. Computing Type: general Titles: – TitleFull: Razvoj programskog agenta-igrača za računalnu igru primjenom podržanog učenja ; Development of a software agent-player for a computer game using reinforcement learning Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Tadić, Bartul – PersonEntity: Name: NameFull: Popović, Siniša IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2023 Identifiers: – Type: issn-locals Value: edsbas |
| ResultId | 1 |
Nájsť tento článok vo Web of Science