EVOLUTIONARY FEATURE GENERATION FOR CONTENT-BASED AUDIO CLASSIFICATION AND RETRIEVAL
Gespeichert in:
| Titel: | EVOLUTIONARY FEATURE GENERATION FOR CONTENT-BASED AUDIO CLASSIFICATION AND RETRIEVAL |
|---|---|
| Autoren: | Makinen, Toni, Kiranyaz, Serkan, Pulkkinen, Jenni, Gabbouj, Moncef |
| Publikationsjahr: | 2012 |
| Bestand: | The Hong Kong University of Science and Technology: HKUST Institutional Repository |
| Schlagwörter: | Feature generation, Particle swarm optimization, Neural networks, Content-based classification |
| Beschreibung: | Many commonly applied audio features suffer from certain limitations in describing the data content for classification and retrieval purposes. To remedy this drawback, in this paper we propose an evolutionary feature synthesis (EFS) technique, which is applied over traditional audio features to improve their data discrimination power. The underlying evolutionary optimization algorithm performs both feature selection and feature generation in an interleaved manner, optimizing also the dimensionality of the synthesized feature vector. The process is based on multi-dimensional particle swarm optimization (MD PSO) with two additional techniques: the fractional global best formation (FGBF) and simulated annealing (SA). The experimented classification and retrieval performances over a 16-class audio database show improvements of up to 11% when compared to the corresponding performances of the original features. |
| Publikationsart: | conference object |
| Sprache: | English |
| Relation: | http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=LinksAMR&SrcApp=PARTNER_APP&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000310623800296 |
| Verfügbarkeit: | http://repository.hkust.edu.hk/ir/Record/1783.1-53465 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=LinksAMR&SrcApp=PARTNER_APP&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000310623800296 http://www.scopus.com/record/display.url?eid=2-s2.0-84869780956&origin=inward |
| Dokumentencode: | edsbas.BCD92E31 |
| Datenbank: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: http://repository.hkust.edu.hk/ir/Record/1783.1-53465# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Makinen%20T Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.BCD92E31 RelevancyScore: 789 AccessLevel: 3 PubType: Conference PubTypeId: conference PreciseRelevancyScore: 788.984313964844 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: EVOLUTIONARY FEATURE GENERATION FOR CONTENT-BASED AUDIO CLASSIFICATION AND RETRIEVAL – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Makinen%2C+Toni%22">Makinen, Toni</searchLink><br /><searchLink fieldCode="AR" term="%22Kiranyaz%2C+Serkan%22">Kiranyaz, Serkan</searchLink><br /><searchLink fieldCode="AR" term="%22Pulkkinen%2C+Jenni%22">Pulkkinen, Jenni</searchLink><br /><searchLink fieldCode="AR" term="%22Gabbouj%2C+Moncef%22">Gabbouj, Moncef</searchLink> – Name: DatePubCY Label: Publication Year Group: Date Data: 2012 – Name: Subset Label: Collection Group: HoldingsInfo Data: The Hong Kong University of Science and Technology: HKUST Institutional Repository – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Feature+generation%22">Feature generation</searchLink><br /><searchLink fieldCode="DE" term="%22Particle+swarm+optimization%22">Particle swarm optimization</searchLink><br /><searchLink fieldCode="DE" term="%22Neural+networks%22">Neural networks</searchLink><br /><searchLink fieldCode="DE" term="%22Content-based+classification%22">Content-based classification</searchLink> – Name: Abstract Label: Description Group: Ab Data: Many commonly applied audio features suffer from certain limitations in describing the data content for classification and retrieval purposes. To remedy this drawback, in this paper we propose an evolutionary feature synthesis (EFS) technique, which is applied over traditional audio features to improve their data discrimination power. The underlying evolutionary optimization algorithm performs both feature selection and feature generation in an interleaved manner, optimizing also the dimensionality of the synthesized feature vector. The process is based on multi-dimensional particle swarm optimization (MD PSO) with two additional techniques: the fractional global best formation (FGBF) and simulated annealing (SA). The experimented classification and retrieval performances over a 16-class audio database show improvements of up to 11% when compared to the corresponding performances of the original features. – Name: TypeDocument Label: Document Type Group: TypDoc Data: conference object – Name: Language Label: Language Group: Lang Data: English – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=LinksAMR&SrcApp=PARTNER_APP&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000310623800296 – Name: URL Label: Availability Group: URL Data: http://repository.hkust.edu.hk/ir/Record/1783.1-53465<br />http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=LinksAMR&SrcApp=PARTNER_APP&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000310623800296<br />http://www.scopus.com/record/display.url?eid=2-s2.0-84869780956&origin=inward – Name: AN Label: Accession Number Group: ID Data: edsbas.BCD92E31 |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.BCD92E31 |
| RecordInfo | BibRecord: BibEntity: Languages: – Text: English Subjects: – SubjectFull: Feature generation Type: general – SubjectFull: Particle swarm optimization Type: general – SubjectFull: Neural networks Type: general – SubjectFull: Content-based classification Type: general Titles: – TitleFull: EVOLUTIONARY FEATURE GENERATION FOR CONTENT-BASED AUDIO CLASSIFICATION AND RETRIEVAL Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Makinen, Toni – PersonEntity: Name: NameFull: Kiranyaz, Serkan – PersonEntity: Name: NameFull: Pulkkinen, Jenni – PersonEntity: Name: NameFull: Gabbouj, Moncef IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2012 Identifiers: – Type: issn-locals Value: edsbas |
| ResultId | 1 |
Nájsť tento článok vo Web of Science