EVOLUTIONARY FEATURE GENERATION FOR CONTENT-BASED AUDIO CLASSIFICATION AND RETRIEVAL

Gespeichert in:
Bibliographische Detailangaben
Titel: EVOLUTIONARY FEATURE GENERATION FOR CONTENT-BASED AUDIO CLASSIFICATION AND RETRIEVAL
Autoren: Makinen, Toni, Kiranyaz, Serkan, Pulkkinen, Jenni, Gabbouj, Moncef
Publikationsjahr: 2012
Bestand: The Hong Kong University of Science and Technology: HKUST Institutional Repository
Schlagwörter: Feature generation, Particle swarm optimization, Neural networks, Content-based classification
Beschreibung: Many commonly applied audio features suffer from certain limitations in describing the data content for classification and retrieval purposes. To remedy this drawback, in this paper we propose an evolutionary feature synthesis (EFS) technique, which is applied over traditional audio features to improve their data discrimination power. The underlying evolutionary optimization algorithm performs both feature selection and feature generation in an interleaved manner, optimizing also the dimensionality of the synthesized feature vector. The process is based on multi-dimensional particle swarm optimization (MD PSO) with two additional techniques: the fractional global best formation (FGBF) and simulated annealing (SA). The experimented classification and retrieval performances over a 16-class audio database show improvements of up to 11% when compared to the corresponding performances of the original features.
Publikationsart: conference object
Sprache: English
Relation: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=LinksAMR&SrcApp=PARTNER_APP&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000310623800296
Verfügbarkeit: http://repository.hkust.edu.hk/ir/Record/1783.1-53465
http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=LinksAMR&SrcApp=PARTNER_APP&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000310623800296
http://www.scopus.com/record/display.url?eid=2-s2.0-84869780956&origin=inward
Dokumentencode: edsbas.BCD92E31
Datenbank: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: http://repository.hkust.edu.hk/ir/Record/1783.1-53465#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Makinen%20T
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.BCD92E31
RelevancyScore: 789
AccessLevel: 3
PubType: Conference
PubTypeId: conference
PreciseRelevancyScore: 788.984313964844
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: EVOLUTIONARY FEATURE GENERATION FOR CONTENT-BASED AUDIO CLASSIFICATION AND RETRIEVAL
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Makinen%2C+Toni%22">Makinen, Toni</searchLink><br /><searchLink fieldCode="AR" term="%22Kiranyaz%2C+Serkan%22">Kiranyaz, Serkan</searchLink><br /><searchLink fieldCode="AR" term="%22Pulkkinen%2C+Jenni%22">Pulkkinen, Jenni</searchLink><br /><searchLink fieldCode="AR" term="%22Gabbouj%2C+Moncef%22">Gabbouj, Moncef</searchLink>
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2012
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: The Hong Kong University of Science and Technology: HKUST Institutional Repository
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Feature+generation%22">Feature generation</searchLink><br /><searchLink fieldCode="DE" term="%22Particle+swarm+optimization%22">Particle swarm optimization</searchLink><br /><searchLink fieldCode="DE" term="%22Neural+networks%22">Neural networks</searchLink><br /><searchLink fieldCode="DE" term="%22Content-based+classification%22">Content-based classification</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Many commonly applied audio features suffer from certain limitations in describing the data content for classification and retrieval purposes. To remedy this drawback, in this paper we propose an evolutionary feature synthesis (EFS) technique, which is applied over traditional audio features to improve their data discrimination power. The underlying evolutionary optimization algorithm performs both feature selection and feature generation in an interleaved manner, optimizing also the dimensionality of the synthesized feature vector. The process is based on multi-dimensional particle swarm optimization (MD PSO) with two additional techniques: the fractional global best formation (FGBF) and simulated annealing (SA). The experimented classification and retrieval performances over a 16-class audio database show improvements of up to 11% when compared to the corresponding performances of the original features.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: conference object
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=LinksAMR&SrcApp=PARTNER_APP&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000310623800296
– Name: URL
  Label: Availability
  Group: URL
  Data: http://repository.hkust.edu.hk/ir/Record/1783.1-53465<br />http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=LinksAMR&SrcApp=PARTNER_APP&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000310623800296<br />http://www.scopus.com/record/display.url?eid=2-s2.0-84869780956&origin=inward
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.BCD92E31
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.BCD92E31
RecordInfo BibRecord:
  BibEntity:
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Feature generation
        Type: general
      – SubjectFull: Particle swarm optimization
        Type: general
      – SubjectFull: Neural networks
        Type: general
      – SubjectFull: Content-based classification
        Type: general
    Titles:
      – TitleFull: EVOLUTIONARY FEATURE GENERATION FOR CONTENT-BASED AUDIO CLASSIFICATION AND RETRIEVAL
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Makinen, Toni
      – PersonEntity:
          Name:
            NameFull: Kiranyaz, Serkan
      – PersonEntity:
          Name:
            NameFull: Pulkkinen, Jenni
      – PersonEntity:
          Name:
            NameFull: Gabbouj, Moncef
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2012
          Identifiers:
            – Type: issn-locals
              Value: edsbas
ResultId 1