Generalized Hamming Weight as a Weight Function

Uloženo v:
Podrobná bibliografie
Název: Generalized Hamming Weight as a Weight Function
Autoři: Nogin, Dmitrii Yu
Přispěvatelé: Coding and cryptography (CODES), Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), INRIA
Zdroj: https://hal.inria.fr/inria-00072900 ; [Research Report] RR-3762, INRIA. 1999.
Informace o vydavateli: HAL CCSD
Rok vydání: 1999
Sbírka: Archive ouverte HAL (Hyper Article en Ligne, CCSD - Centre pour la Communication Scientifique Directe)
Témata: GENERALIZED SPECTRUM, GENERALIZED HAMMING WEIGHT, WEIGHT ENUMERATOR, CODE, EQUIVALENCE, [INFO.INFO-OH]Computer Science [cs]/Other [cs.OH]
Popis: We prove that the weight function of a linear code, that is, an integer function defined on the vector space of messages, uniquely determines the code up to equivalence. We propose a natural way to extend the r-th generalized Hamming weight, that is, a function on r-subspaces of a code, to a function on the r-th exterior power of the code. Using this, we show that for any linear code C and any integer r not greater than the dimension of C, another code C' exists whose weight distribution corresponds to a part of the generalized weight spectrum of C from the r-th weights to the k-th. In particular, the minimum distance of C' is proportional to the r-th generalized weight of C.
Druh dokumentu: report
Jazyk: English
Relation: Report N°: RR-3762; inria-00072900; https://hal.inria.fr/inria-00072900; https://hal.inria.fr/inria-00072900/document; https://hal.inria.fr/inria-00072900/file/RR-3762.pdf
Dostupnost: https://hal.inria.fr/inria-00072900
https://hal.inria.fr/inria-00072900/document
https://hal.inria.fr/inria-00072900/file/RR-3762.pdf
Rights: info:eu-repo/semantics/OpenAccess
Přístupové číslo: edsbas.BACB8B2D
Databáze: BASE
Popis
Abstrakt:We prove that the weight function of a linear code, that is, an integer function defined on the vector space of messages, uniquely determines the code up to equivalence. We propose a natural way to extend the r-th generalized Hamming weight, that is, a function on r-subspaces of a code, to a function on the r-th exterior power of the code. Using this, we show that for any linear code C and any integer r not greater than the dimension of C, another code C' exists whose weight distribution corresponds to a part of the generalized weight spectrum of C from the r-th weights to the k-th. In particular, the minimum distance of C' is proportional to the r-th generalized weight of C.