Ablation study results.
Uloženo v:
| Název: | Ablation study results. |
|---|---|
| Autoři: | Victoria Erofeeva, Oleg Granichin, Vikentii Pankov, Zeev Volkovich |
| Rok vydání: | 2025 |
| Témata: | Cell Biology, Infectious Diseases, Biological Sciences not elsewhere classified, Mathematical Sciences not elsewhere classified, Information Systems not elsewhere classified, world datasets show, unlike traditional methods, trained neural network, dynamic network changes, system 8217, minimal communication overhead, efficient decentralized clustering, system adapts, clustering structure, clustering accuracy, |
| Popis: | The paper presents a decentralized, real-time clustering method designed for large-scale, distributed environments such as the Internet of Things (IoT). The approach combines compressed sensing for dimensionality reduction with a consensus protocol for distributed aggregation, enabling each node to generate compact, consistent summaries of the system’s clustering structure with minimal communication overhead. These representations are processed by a pre-trained neural network to reconstruct the global clustering state entirely without centralized coordination. Unlike traditional methods that depend on static topologies and centralized computation, this system adapts to dynamic network changes and supports on-the-fly processing. The system suits IoT applications where data must be processed locally, and immediate results are essential. Experiments on both synthetic and real-world datasets show that the method significantly outperforms baseline approaches in clustering accuracy, making it highly suitable for resource-limited, decentralized IoT scenarios. |
| Druh dokumentu: | dataset |
| Jazyk: | unknown |
| Relation: | https://figshare.com/articles/dataset/Ablation_study_results_/29667969 |
| DOI: | 10.1371/journal.pone.0327396.t004 |
| Dostupnost: | https://doi.org/10.1371/journal.pone.0327396.t004 https://figshare.com/articles/dataset/Ablation_study_results_/29667969 |
| Rights: | CC BY 4.0 |
| Přístupové číslo: | edsbas.B2DD1C35 |
| Databáze: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.1371/journal.pone.0327396.t004# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Erofeeva%20V Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.B2DD1C35 RelevancyScore: 931 AccessLevel: 3 PubType: PubTypeId: unknown PreciseRelevancyScore: 931.3056640625 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Ablation study results. – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Victoria+Erofeeva%22">Victoria Erofeeva</searchLink><br /><searchLink fieldCode="AR" term="%22Oleg+Granichin%22">Oleg Granichin</searchLink><br /><searchLink fieldCode="AR" term="%22Vikentii+Pankov%22">Vikentii Pankov</searchLink><br /><searchLink fieldCode="AR" term="%22Zeev+Volkovich%22">Zeev Volkovich</searchLink> – Name: DatePubCY Label: Publication Year Group: Date Data: 2025 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Cell+Biology%22">Cell Biology</searchLink><br /><searchLink fieldCode="DE" term="%22Infectious+Diseases%22">Infectious Diseases</searchLink><br /><searchLink fieldCode="DE" term="%22Biological+Sciences+not+elsewhere+classified%22">Biological Sciences not elsewhere classified</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematical+Sciences+not+elsewhere+classified%22">Mathematical Sciences not elsewhere classified</searchLink><br /><searchLink fieldCode="DE" term="%22Information+Systems+not+elsewhere+classified%22">Information Systems not elsewhere classified</searchLink><br /><searchLink fieldCode="DE" term="%22world+datasets+show%22">world datasets show</searchLink><br /><searchLink fieldCode="DE" term="%22unlike+traditional+methods%22">unlike traditional methods</searchLink><br /><searchLink fieldCode="DE" term="%22trained+neural+network%22">trained neural network</searchLink><br /><searchLink fieldCode="DE" term="%22dynamic+network+changes%22">dynamic network changes</searchLink><br /><searchLink fieldCode="DE" term="%22system+%26#+8217%22">system &# 8217</searchLink><br /><searchLink fieldCode="DE" term="%22minimal+communication+overhead%22">minimal communication overhead</searchLink><br /><searchLink fieldCode="DE" term="%22efficient+decentralized+clustering%22">efficient decentralized clustering</searchLink><br /><searchLink fieldCode="DE" term="%22system+adapts%22">system adapts</searchLink><br /><searchLink fieldCode="DE" term="%22clustering+structure%22">clustering structure</searchLink><br /><searchLink fieldCode="DE" term="%22clustering+accuracy%22">clustering accuracy</searchLink><br /><searchLink fieldCode="DE" term="%22xlink+">%22">xlink "></searchLink><br /><searchLink fieldCode="DE" term="%22static+topologies%22">static topologies</searchLink><br /><searchLink fieldCode="DE" term="%22paper+presents%22">paper presents</searchLink><br /><searchLink fieldCode="DE" term="%22iot+%29%22">iot )</searchLink><br /><searchLink fieldCode="DE" term="%22immediate+results%22">immediate results</searchLink><br /><searchLink fieldCode="DE" term="%22highly+suitable%22">highly suitable</searchLink><br /><searchLink fieldCode="DE" term="%22generate+compact%22">generate compact</searchLink><br /><searchLink fieldCode="DE" term="%22fly+processing%22">fly processing</searchLink><br /><searchLink fieldCode="DE" term="%22dynamical+multi%22">dynamical multi</searchLink><br /><searchLink fieldCode="DE" term="%22distributed+environments%22">distributed environments</searchLink><br /><searchLink fieldCode="DE" term="%22distributed+aggregation%22">distributed aggregation</searchLink><br /><searchLink fieldCode="DE" term="%22dimensionality+reduction%22">dimensionality reduction</searchLink><br /><searchLink fieldCode="DE" term="%22data+must%22">data must</searchLink><br /><searchLink fieldCode="DE" term="%22consistent+summaries%22">consistent summaries</searchLink><br /><searchLink fieldCode="DE" term="%22consensus+protocol%22">consensus protocol</searchLink> – Name: Abstract Label: Description Group: Ab Data: The paper presents a decentralized, real-time clustering method designed for large-scale, distributed environments such as the Internet of Things (IoT). The approach combines compressed sensing for dimensionality reduction with a consensus protocol for distributed aggregation, enabling each node to generate compact, consistent summaries of the system’s clustering structure with minimal communication overhead. These representations are processed by a pre-trained neural network to reconstruct the global clustering state entirely without centralized coordination. Unlike traditional methods that depend on static topologies and centralized computation, this system adapts to dynamic network changes and supports on-the-fly processing. The system suits IoT applications where data must be processed locally, and immediate results are essential. Experiments on both synthetic and real-world datasets show that the method significantly outperforms baseline approaches in clustering accuracy, making it highly suitable for resource-limited, decentralized IoT scenarios. – Name: TypeDocument Label: Document Type Group: TypDoc Data: dataset – Name: Language Label: Language Group: Lang Data: unknown – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://figshare.com/articles/dataset/Ablation_study_results_/29667969 – Name: DOI Label: DOI Group: ID Data: 10.1371/journal.pone.0327396.t004 – Name: URL Label: Availability Group: URL Data: https://doi.org/10.1371/journal.pone.0327396.t004<br />https://figshare.com/articles/dataset/Ablation_study_results_/29667969 – Name: Copyright Label: Rights Group: Cpyrght Data: CC BY 4.0 – Name: AN Label: Accession Number Group: ID Data: edsbas.B2DD1C35 |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.B2DD1C35 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1371/journal.pone.0327396.t004 Languages: – Text: unknown Subjects: – SubjectFull: Cell Biology Type: general – SubjectFull: Infectious Diseases Type: general – SubjectFull: Biological Sciences not elsewhere classified Type: general – SubjectFull: Mathematical Sciences not elsewhere classified Type: general – SubjectFull: Information Systems not elsewhere classified Type: general – SubjectFull: world datasets show Type: general – SubjectFull: unlike traditional methods Type: general – SubjectFull: trained neural network Type: general – SubjectFull: dynamic network changes Type: general – SubjectFull: system &# 8217 Type: general – SubjectFull: minimal communication overhead Type: general – SubjectFull: efficient decentralized clustering Type: general – SubjectFull: system adapts Type: general – SubjectFull: clustering structure Type: general – SubjectFull: clustering accuracy Type: general – SubjectFull: xlink "> Type: general – SubjectFull: static topologies Type: general – SubjectFull: paper presents Type: general – SubjectFull: iot ) Type: general – SubjectFull: immediate results Type: general – SubjectFull: highly suitable Type: general – SubjectFull: generate compact Type: general – SubjectFull: fly processing Type: general – SubjectFull: dynamical multi Type: general – SubjectFull: distributed environments Type: general – SubjectFull: distributed aggregation Type: general – SubjectFull: dimensionality reduction Type: general – SubjectFull: data must Type: general – SubjectFull: consistent summaries Type: general – SubjectFull: consensus protocol Type: general Titles: – TitleFull: Ablation study results. Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Victoria Erofeeva – PersonEntity: Name: NameFull: Oleg Granichin – PersonEntity: Name: NameFull: Vikentii Pankov – PersonEntity: Name: NameFull: Zeev Volkovich IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-locals Value: edsbas – Type: issn-locals Value: edsbas.oa |
| ResultId | 1 |
Nájsť tento článok vo Web of Science