Topical event detection on Twitter

Uloženo v:
Podrobná bibliografie
Název: Topical event detection on Twitter
Autoři: Lishan Cui, Xiuzhen Zhang, Xiangmin Zhou, Flora Salim
Rok vydání: 2016
Témata: Database systems, Burst detection, Dynamic topic modelling, Event detection, Topic mutation
Popis: Event detection on Twitter has attracted active research. Although existing work considers the semantic topic structure of documents for event detection, the topic dynamics and the semantic consistency are under-investigated. In this paper, we study the problem of topical event detection in tweet streams. We define topical events as the bursty occurrences of semantically consistent topics. We decompose the problem of topical event detection into two components: (1) We address the issue of the semantic incoherence of the evolution of topics. We propose to improve topic modelling to filter out semantically inconsistent dynamic topics. (2) We propose to perform burst detection on the time series of dynamic topics to detect bursty occurrences. We apply our proposed techniques to the real world application by detecting topical events in public transport tweets. Experiments demonstrate that our approach can detect the newsworthy events with high success rate.
Druh dokumentu: conference object
Jazyk: unknown
Relation: 10779/rmit.27384603.v1; https://figshare.com/articles/conference_contribution/Topical_event_detection_on_Twitter/27384603
Dostupnost: https://figshare.com/articles/conference_contribution/Topical_event_detection_on_Twitter/27384603
Rights: All rights reserved
Přístupové číslo: edsbas.AC64FB7C
Databáze: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://figshare.com/articles/conference_contribution/Topical_event_detection_on_Twitter/27384603#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Cui%20L
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.AC64FB7C
RelevancyScore: 808
AccessLevel: 3
PubType: Conference
PubTypeId: conference
PreciseRelevancyScore: 808.477478027344
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Topical event detection on Twitter
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Lishan+Cui%22">Lishan Cui</searchLink><br /><searchLink fieldCode="AR" term="%22Xiuzhen+Zhang%22">Xiuzhen Zhang</searchLink><br /><searchLink fieldCode="AR" term="%22Xiangmin+Zhou%22">Xiangmin Zhou</searchLink><br /><searchLink fieldCode="AR" term="%22Flora+Salim%22">Flora Salim</searchLink>
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2016
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Database+systems%22">Database systems</searchLink><br /><searchLink fieldCode="DE" term="%22Burst+detection%22">Burst detection</searchLink><br /><searchLink fieldCode="DE" term="%22Dynamic+topic+modelling%22">Dynamic topic modelling</searchLink><br /><searchLink fieldCode="DE" term="%22Event+detection%22">Event detection</searchLink><br /><searchLink fieldCode="DE" term="%22Topic+mutation%22">Topic mutation</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Event detection on Twitter has attracted active research. Although existing work considers the semantic topic structure of documents for event detection, the topic dynamics and the semantic consistency are under-investigated. In this paper, we study the problem of topical event detection in tweet streams. We define topical events as the bursty occurrences of semantically consistent topics. We decompose the problem of topical event detection into two components: (1) We address the issue of the semantic incoherence of the evolution of topics. We propose to improve topic modelling to filter out semantically inconsistent dynamic topics. (2) We propose to perform burst detection on the time series of dynamic topics to detect bursty occurrences. We apply our proposed techniques to the real world application by detecting topical events in public transport tweets. Experiments demonstrate that our approach can detect the newsworthy events with high success rate.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: conference object
– Name: Language
  Label: Language
  Group: Lang
  Data: unknown
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: 10779/rmit.27384603.v1; https://figshare.com/articles/conference_contribution/Topical_event_detection_on_Twitter/27384603
– Name: URL
  Label: Availability
  Group: URL
  Data: https://figshare.com/articles/conference_contribution/Topical_event_detection_on_Twitter/27384603
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: All rights reserved
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.AC64FB7C
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.AC64FB7C
RecordInfo BibRecord:
  BibEntity:
    Languages:
      – Text: unknown
    Subjects:
      – SubjectFull: Database systems
        Type: general
      – SubjectFull: Burst detection
        Type: general
      – SubjectFull: Dynamic topic modelling
        Type: general
      – SubjectFull: Event detection
        Type: general
      – SubjectFull: Topic mutation
        Type: general
    Titles:
      – TitleFull: Topical event detection on Twitter
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Lishan Cui
      – PersonEntity:
          Name:
            NameFull: Xiuzhen Zhang
      – PersonEntity:
          Name:
            NameFull: Xiangmin Zhou
      – PersonEntity:
          Name:
            NameFull: Flora Salim
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2016
          Identifiers:
            – Type: issn-locals
              Value: edsbas
ResultId 1