On Jump-Diffusive Driving Noise Sources: Some Explicit Results and Applications
Uloženo v:
| Název: | On Jump-Diffusive Driving Noise Sources: Some Explicit Results and Applications |
|---|---|
| Autoři: | Hongler, Max-Olivier, Filliger, Roger |
| Informace o vydavateli: | Springer Dordrecht |
| Rok vydání: | 2017 |
| Sbírka: | Ecole Polytechnique Fédérale Lausanne (EPFL): Infoscience |
| Témata: | Markov jump-diffusive processes - Meanfield approach to multi-agents systems - Flocking beahvior of swarms |
| Popis: | We study some linear and nonlinear shot noise models where the jumps are drawn from a compound Poisson process with jump sizes following an Erlang-m distribution. We show that the associated Master equation can be written as a spatial mth order partial differential equation without integral term. This differential form is valid for statedependent Poisson rates and we use it to characterize, via a mean-field approach, the collective dynamics of a large population of pure jump processes interacting via their Poisson rates. We explicitly show that for an appropriate class of interactions, the speed of a tight collective traveling wave behavior can be triggered by the jump size parameter m. As a second application we consider an exceptional class of stochastic differential equations with nonlinear drift, Poisson shot noise and an additional White Gaussian Noise term, for which explicit solutions to the associated Master equation are derived. ; STI |
| Druh dokumentu: | article in journal/newspaper |
| Jazyk: | unknown |
| Relation: | https://infoscience.epfl.ch/record/227404/files/HON_FILL_2017.pdf; Methodoly and Computing in Applied Probability; https://infoscience.epfl.ch/handle/20.500.14299/136480; WOS:000484932800007 |
| DOI: | 10.1007/s11009-017-9566-3 |
| Dostupnost: | https://doi.org/10.1007/s11009-017-9566-3 https://infoscience.epfl.ch/handle/20.500.14299/136480 https://hdl.handle.net/20.500.14299/136480 |
| Přístupové číslo: | edsbas.A69A2643 |
| Databáze: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.1007/s11009-017-9566-3# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Hongler%20M Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.A69A2643 RelevancyScore: 795 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 794.807434082031 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: On Jump-Diffusive Driving Noise Sources: Some Explicit Results and Applications – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Hongler%2C+Max-Olivier%22">Hongler, Max-Olivier</searchLink><br /><searchLink fieldCode="AR" term="%22Filliger%2C+Roger%22">Filliger, Roger</searchLink> – Name: Publisher Label: Publisher Information Group: PubInfo Data: Springer<br />Dordrecht – Name: DatePubCY Label: Publication Year Group: Date Data: 2017 – Name: Subset Label: Collection Group: HoldingsInfo Data: Ecole Polytechnique Fédérale Lausanne (EPFL): Infoscience – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Markov+jump-diffusive+processes+-+Meanfield+approach+to+multi-agents+systems+-+Flocking+beahvior+of+swarms%22">Markov jump-diffusive processes - Meanfield approach to multi-agents systems - Flocking beahvior of swarms</searchLink> – Name: Abstract Label: Description Group: Ab Data: We study some linear and nonlinear shot noise models where the jumps are drawn from a compound Poisson process with jump sizes following an Erlang-m distribution. We show that the associated Master equation can be written as a spatial mth order partial differential equation without integral term. This differential form is valid for statedependent Poisson rates and we use it to characterize, via a mean-field approach, the collective dynamics of a large population of pure jump processes interacting via their Poisson rates. We explicitly show that for an appropriate class of interactions, the speed of a tight collective traveling wave behavior can be triggered by the jump size parameter m. As a second application we consider an exceptional class of stochastic differential equations with nonlinear drift, Poisson shot noise and an additional White Gaussian Noise term, for which explicit solutions to the associated Master equation are derived. ; STI – Name: TypeDocument Label: Document Type Group: TypDoc Data: article in journal/newspaper – Name: Language Label: Language Group: Lang Data: unknown – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://infoscience.epfl.ch/record/227404/files/HON_FILL_2017.pdf; Methodoly and Computing in Applied Probability; https://infoscience.epfl.ch/handle/20.500.14299/136480; WOS:000484932800007 – Name: DOI Label: DOI Group: ID Data: 10.1007/s11009-017-9566-3 – Name: URL Label: Availability Group: URL Data: https://doi.org/10.1007/s11009-017-9566-3<br />https://infoscience.epfl.ch/handle/20.500.14299/136480<br />https://hdl.handle.net/20.500.14299/136480 – Name: AN Label: Accession Number Group: ID Data: edsbas.A69A2643 |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.A69A2643 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1007/s11009-017-9566-3 Languages: – Text: unknown Subjects: – SubjectFull: Markov jump-diffusive processes - Meanfield approach to multi-agents systems - Flocking beahvior of swarms Type: general Titles: – TitleFull: On Jump-Diffusive Driving Noise Sources: Some Explicit Results and Applications Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Hongler, Max-Olivier – PersonEntity: Name: NameFull: Filliger, Roger IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2017 Identifiers: – Type: issn-locals Value: edsbas |
| ResultId | 1 |
Nájsť tento článok vo Web of Science