On Jump-Diffusive Driving Noise Sources: Some Explicit Results and Applications

Uloženo v:
Podrobná bibliografie
Název: On Jump-Diffusive Driving Noise Sources: Some Explicit Results and Applications
Autoři: Hongler, Max-Olivier, Filliger, Roger
Informace o vydavateli: Springer
Dordrecht
Rok vydání: 2017
Sbírka: Ecole Polytechnique Fédérale Lausanne (EPFL): Infoscience
Témata: Markov jump-diffusive processes - Meanfield approach to multi-agents systems - Flocking beahvior of swarms
Popis: We study some linear and nonlinear shot noise models where the jumps are drawn from a compound Poisson process with jump sizes following an Erlang-m distribution. We show that the associated Master equation can be written as a spatial mth order partial differential equation without integral term. This differential form is valid for statedependent Poisson rates and we use it to characterize, via a mean-field approach, the collective dynamics of a large population of pure jump processes interacting via their Poisson rates. We explicitly show that for an appropriate class of interactions, the speed of a tight collective traveling wave behavior can be triggered by the jump size parameter m. As a second application we consider an exceptional class of stochastic differential equations with nonlinear drift, Poisson shot noise and an additional White Gaussian Noise term, for which explicit solutions to the associated Master equation are derived. ; STI
Druh dokumentu: article in journal/newspaper
Jazyk: unknown
Relation: https://infoscience.epfl.ch/record/227404/files/HON_FILL_2017.pdf; Methodoly and Computing in Applied Probability; https://infoscience.epfl.ch/handle/20.500.14299/136480; WOS:000484932800007
DOI: 10.1007/s11009-017-9566-3
Dostupnost: https://doi.org/10.1007/s11009-017-9566-3
https://infoscience.epfl.ch/handle/20.500.14299/136480
https://hdl.handle.net/20.500.14299/136480
Přístupové číslo: edsbas.A69A2643
Databáze: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.1007/s11009-017-9566-3#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Hongler%20M
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.A69A2643
RelevancyScore: 795
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 794.807434082031
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: On Jump-Diffusive Driving Noise Sources: Some Explicit Results and Applications
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Hongler%2C+Max-Olivier%22">Hongler, Max-Olivier</searchLink><br /><searchLink fieldCode="AR" term="%22Filliger%2C+Roger%22">Filliger, Roger</searchLink>
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Springer<br />Dordrecht
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2017
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Ecole Polytechnique Fédérale Lausanne (EPFL): Infoscience
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Markov+jump-diffusive+processes+-+Meanfield+approach+to+multi-agents+systems+-+Flocking+beahvior+of+swarms%22">Markov jump-diffusive processes - Meanfield approach to multi-agents systems - Flocking beahvior of swarms</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: We study some linear and nonlinear shot noise models where the jumps are drawn from a compound Poisson process with jump sizes following an Erlang-m distribution. We show that the associated Master equation can be written as a spatial mth order partial differential equation without integral term. This differential form is valid for statedependent Poisson rates and we use it to characterize, via a mean-field approach, the collective dynamics of a large population of pure jump processes interacting via their Poisson rates. We explicitly show that for an appropriate class of interactions, the speed of a tight collective traveling wave behavior can be triggered by the jump size parameter m. As a second application we consider an exceptional class of stochastic differential equations with nonlinear drift, Poisson shot noise and an additional White Gaussian Noise term, for which explicit solutions to the associated Master equation are derived. ; STI
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article in journal/newspaper
– Name: Language
  Label: Language
  Group: Lang
  Data: unknown
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://infoscience.epfl.ch/record/227404/files/HON_FILL_2017.pdf; Methodoly and Computing in Applied Probability; https://infoscience.epfl.ch/handle/20.500.14299/136480; WOS:000484932800007
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1007/s11009-017-9566-3
– Name: URL
  Label: Availability
  Group: URL
  Data: https://doi.org/10.1007/s11009-017-9566-3<br />https://infoscience.epfl.ch/handle/20.500.14299/136480<br />https://hdl.handle.net/20.500.14299/136480
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.A69A2643
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.A69A2643
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1007/s11009-017-9566-3
    Languages:
      – Text: unknown
    Subjects:
      – SubjectFull: Markov jump-diffusive processes - Meanfield approach to multi-agents systems - Flocking beahvior of swarms
        Type: general
    Titles:
      – TitleFull: On Jump-Diffusive Driving Noise Sources: Some Explicit Results and Applications
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Hongler, Max-Olivier
      – PersonEntity:
          Name:
            NameFull: Filliger, Roger
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2017
          Identifiers:
            – Type: issn-locals
              Value: edsbas
ResultId 1