Effect of dataset distribution on automatic road extraction in very high-resolution orthophoto using DeepLab V3+

Saved in:
Bibliographic Details
Title: Effect of dataset distribution on automatic road extraction in very high-resolution orthophoto using DeepLab V3+
Authors: Sussi, Sussi, Emir, Husni, Arthur, Siburian, Rahadian, Yusuf, Agung Budi, Harto, Deni, Suwardhi
Publisher Information: Zenodo
Publication Year: 2024
Collection: Zenodo
Subject Terms: Deep learning, DeepLab V3+, Dice loss, Mean intersection over union, Road extraction
Description: Road extraction is one of the stages in the map-making process, which has been done manually, takes a long time, and costs a lot. Deep Learning is used to speed up the road extraction process by performing binary semantic segmentation on the image. We propose DeepLab V3+ to produce road extraction from very high-resolution orthophoto for Indonesia study area, which poses many challenges, such as road obstruction by trees, clouds, building shadows, dense traffic, and similarities to rivers and rice fields. We compared the distribution of datasets to obtain the optimal performance of the DeepLab V3+ model in relation to the dataset. The results showed that dataset ratio of 75:10:15 resulted in mean Intersection Over Union (mIoU) of 0.92 and Dice Loss of 0.042. Visually, the results of road extraction are more accurate when compared to the results obtained from different distributions of the dataset.
Document Type: article in journal/newspaper
Language: unknown
ISSN: 2252-8938
Relation: https://zenodo.org/records/14038266; oai:zenodo.org:14038266
DOI: 10.11591/ijai.v13.i2.pp1650-1657
Availability: https://doi.org/10.11591/ijai.v13.i2.pp1650-1657
https://zenodo.org/records/14038266
Rights: Creative Commons Attribution 4.0 International ; cc-by-4.0 ; https://creativecommons.org/licenses/by/4.0/legalcode
Accession Number: edsbas.9F3A2FA5
Database: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.11591/ijai.v13.i2.pp1650-1657#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsbas&genre=article&issn=22528938&ISBN=&volume=&issue=&date=20240101&spage=&pages=&title=Effect of dataset distribution on automatic road extraction in very high-resolution orthophoto using DeepLab V3+&atitle=Effect%20of%20dataset%20distribution%20on%20automatic%20road%20extraction%20in%20very%20high-resolution%20orthophoto%20using%20DeepLab%20V3%2B&aulast=Sussi%2C%20Sussi&id=DOI:10.11591/ijai.v13.i2.pp1650-1657
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Sussi%20S
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.9F3A2FA5
RelevancyScore: 969
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 968.605590820313
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Effect of dataset distribution on automatic road extraction in very high-resolution orthophoto using DeepLab V3+
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Sussi%2C+Sussi%22">Sussi, Sussi</searchLink><br /><searchLink fieldCode="AR" term="%22Emir%2C+Husni%22">Emir, Husni</searchLink><br /><searchLink fieldCode="AR" term="%22Arthur%2C+Siburian%22">Arthur, Siburian</searchLink><br /><searchLink fieldCode="AR" term="%22Rahadian%2C+Yusuf%22">Rahadian, Yusuf</searchLink><br /><searchLink fieldCode="AR" term="%22Agung+Budi%2C+Harto%22">Agung Budi, Harto</searchLink><br /><searchLink fieldCode="AR" term="%22Deni%2C+Suwardhi%22">Deni, Suwardhi</searchLink>
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Zenodo
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2024
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Zenodo
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Deep+learning%22">Deep learning</searchLink><br /><searchLink fieldCode="DE" term="%22DeepLab+V3%2B%22">DeepLab V3+</searchLink><br /><searchLink fieldCode="DE" term="%22Dice+loss%22">Dice loss</searchLink><br /><searchLink fieldCode="DE" term="%22Mean+intersection+over+union%22">Mean intersection over union</searchLink><br /><searchLink fieldCode="DE" term="%22Road+extraction%22">Road extraction</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Road extraction is one of the stages in the map-making process, which has been done manually, takes a long time, and costs a lot. Deep Learning is used to speed up the road extraction process by performing binary semantic segmentation on the image. We propose DeepLab V3+ to produce road extraction from very high-resolution orthophoto for Indonesia study area, which poses many challenges, such as road obstruction by trees, clouds, building shadows, dense traffic, and similarities to rivers and rice fields. We compared the distribution of datasets to obtain the optimal performance of the DeepLab V3+ model in relation to the dataset. The results showed that dataset ratio of 75:10:15 resulted in mean Intersection Over Union (mIoU) of 0.92 and Dice Loss of 0.042. Visually, the results of road extraction are more accurate when compared to the results obtained from different distributions of the dataset.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article in journal/newspaper
– Name: Language
  Label: Language
  Group: Lang
  Data: unknown
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 2252-8938
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://zenodo.org/records/14038266; oai:zenodo.org:14038266
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.11591/ijai.v13.i2.pp1650-1657
– Name: URL
  Label: Availability
  Group: URL
  Data: https://doi.org/10.11591/ijai.v13.i2.pp1650-1657<br />https://zenodo.org/records/14038266
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: Creative Commons Attribution 4.0 International ; cc-by-4.0 ; https://creativecommons.org/licenses/by/4.0/legalcode
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.9F3A2FA5
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.9F3A2FA5
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.11591/ijai.v13.i2.pp1650-1657
    Languages:
      – Text: unknown
    Subjects:
      – SubjectFull: Deep learning
        Type: general
      – SubjectFull: DeepLab V3+
        Type: general
      – SubjectFull: Dice loss
        Type: general
      – SubjectFull: Mean intersection over union
        Type: general
      – SubjectFull: Road extraction
        Type: general
    Titles:
      – TitleFull: Effect of dataset distribution on automatic road extraction in very high-resolution orthophoto using DeepLab V3+
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Sussi, Sussi
      – PersonEntity:
          Name:
            NameFull: Emir, Husni
      – PersonEntity:
          Name:
            NameFull: Arthur, Siburian
      – PersonEntity:
          Name:
            NameFull: Rahadian, Yusuf
      – PersonEntity:
          Name:
            NameFull: Agung Budi, Harto
      – PersonEntity:
          Name:
            NameFull: Deni, Suwardhi
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2024
          Identifiers:
            – Type: issn-print
              Value: 22528938
            – Type: issn-locals
              Value: edsbas
            – Type: issn-locals
              Value: edsbas.oa
ResultId 1