and Applications., Barcelone: France (2013)' Half Gaussian Kernels Based Shock Filter for

Uloženo v:
Podrobná bibliografie
Název: and Applications., Barcelone: France (2013)' Half Gaussian Kernels Based Shock Filter for
Autoři: Image Deblurring, Baptiste Magnier, Huanyu Xu
Přispěvatelé: The Pennsylvania State University CiteSeerX Archives
Zdroj: http://hal.inria.fr/docs/00/80/79/92/PDF/Half_Gaussian_Kernels_Based_Shock_Filter_for_Image_Deblurring_and_Regularization_VISAPP_2013.pdf.
Rok vydání: 2013
Sbírka: CiteSeerX
Témata: Shock filter, image regularization, deblurring, half Gaussian kernel
Popis: In this paper, a shock-diffusion model is presented to restore both blurred and noisy image. The proposed approach uses a half smoothing kernel to get the precise edge directions, and use different shock-diffusion strategies for different image regions. Experiment results on real images show that the proposed model can effectively eliminate noise and enhance edges while preserving small objects and corners simultaneously. Compared to other approaches, the proposed method offers both better visual results and qualitative measurements. 1
Druh dokumentu: text
Popis souboru: application/pdf
Jazyk: English
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.372.9729; http://hal.inria.fr/docs/00/80/79/92/PDF/Half_Gaussian_Kernels_Based_Shock_Filter_for_Image_Deblurring_and_Regularization_VISAPP_2013.pdf
Dostupnost: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.372.9729
http://hal.inria.fr/docs/00/80/79/92/PDF/Half_Gaussian_Kernels_Based_Shock_Filter_for_Image_Deblurring_and_Regularization_VISAPP_2013.pdf
Rights: Metadata may be used without restrictions as long as the oai identifier remains attached to it.
Přístupové číslo: edsbas.9A09F3A9
Databáze: BASE
Popis
Abstrakt:In this paper, a shock-diffusion model is presented to restore both blurred and noisy image. The proposed approach uses a half smoothing kernel to get the precise edge directions, and use different shock-diffusion strategies for different image regions. Experiment results on real images show that the proposed model can effectively eliminate noise and enhance edges while preserving small objects and corners simultaneously. Compared to other approaches, the proposed method offers both better visual results and qualitative measurements. 1