Wasserstein Regularization of Imaging Problems

Uloženo v:
Podrobná bibliografie
Název: Wasserstein Regularization of Imaging Problems
Autoři: Rabin, Julien, Peyré, Gabriel
Přispěvatelé: Centre de Mathématiques et de Leurs Applications (CMLA), École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS), CEntre de REcherches en MAthématiques de la DEcision (CEREMADE), Université Paris Dauphine-PSL, Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), ANR-08-EMER-0009,NatImages,Adaptivité pour la représentation des images naturelles et des textures(2008)
Zdroj: Proceedings of ICIP'11 ; ICIP 2011 : 2011 IEEE International Conference on Image Processing ; https://hal.science/hal-00591279 ; ICIP 2011 : 2011 IEEE International Conference on Image Processing, Sep 2011, Bruxelles, Belgium
Informace o vydavateli: CCSD
Rok vydání: 2011
Sbírka: Université Paris-Dauphine: HAL
Témata: Variational model, Energy minimization, Image regularization, Gradient descent, color and contrast modification, [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing, [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
Geografické téma: Bruxelles, Belgium
Popis: International audience ; This paper introduces a novel and generic framework embedding statistical constraints for variational problems. We resort to the theory of Monge-Kantorovich optimal mass transport to define penalty terms depending on statistics from images. To cope with the computation time issue of the corresponding Wasserstein distances involved in this approach, we propose an approximate variational formulation for statistics represented as point clouds. We illustrate this framework on the problem of regularized color specification. This is achieved by combining the proposed approximate Wasserstein constraint on color statistics with a generic geometric-based regularization term in a unified variational minimization problem. We believe that this methodology may lead to some other interesting applications in image processing, such as medical imaging modification, texture synthesis, etc.
Druh dokumentu: conference object
Jazyk: English
Dostupnost: https://hal.science/hal-00591279
https://hal.science/hal-00591279v1/document
https://hal.science/hal-00591279v1/file/wasserstein_variational_prox.pdf
Rights: info:eu-repo/semantics/OpenAccess
Přístupové číslo: edsbas.99817BF
Databáze: BASE
Popis
Abstrakt:International audience ; This paper introduces a novel and generic framework embedding statistical constraints for variational problems. We resort to the theory of Monge-Kantorovich optimal mass transport to define penalty terms depending on statistics from images. To cope with the computation time issue of the corresponding Wasserstein distances involved in this approach, we propose an approximate variational formulation for statistics represented as point clouds. We illustrate this framework on the problem of regularized color specification. This is achieved by combining the proposed approximate Wasserstein constraint on color statistics with a generic geometric-based regularization term in a unified variational minimization problem. We believe that this methodology may lead to some other interesting applications in image processing, such as medical imaging modification, texture synthesis, etc.