AI-Generated code detection: an examination of current tools in education

Saved in:
Bibliographic Details
Title: AI-Generated code detection: an examination of current tools in education
Authors: Cuellar Argotty, Juan Esteban
Contributors: Manrique Piramanrique, Rubén Francisco, Facultad de Ingeniería
Publisher Information: Universidad de los Andes
Ingeniería de Sistemas y Computación
Facultad de Ingeniería
Departamento de Ingeniería de Sistemas y Computación
Publication Year: 2025
Collection: Universidad de los Andes Colombia: Séneca
Subject Terms: AI-generated code, AI-Generated Code Detection, Software Engineering Education, Ingeniería
Description: This document explores the challenge of detecting AI-generated Python code in education, highlighting limitations of current detection tools, especially against simple obfuscation techniques. It emphasizes the need for advanced, resilient detection methods and ethical AI use in academic settings. ; This document explores the challenge of detecting AI-generated Python code within educational settings, focusing on first-semester student solutions on the Senecode platform. It outlines the creation of a dataset combining both human-written and AI-generated code (across multiple obfuscation variants) and evaluates seven widely used AI detectors. Despite each tool’s strengths in certain areas—such as high precision or high recall—none consistently excels, and simple code modifications substantially reduce detection accuracy. The study underscores the trade-off between minimizing false positives and maximizing true detection, highlighting the risk of unjustly penalizing students or overlooking AI misuse. Recommendations include developing more advanced, code-specific detection methods, employing a multi-layer approach that integrates human oversight, and fostering ethical AI use through clear academic policies. ; Pregrado
Document Type: bachelor thesis
File Description: 29 páginas; application/pdf
Language: English
Relation: Uchendu, Adaku, Venkatraman, Saranya, Le, Thai, and Lee, Dongwon. "Catch Me If You GPT: Tutorial on Deepfake Texts". Available at: https://aclanthology.org/2024.naacl-tutorials.1.pdf; Weber-Wulff, Debora, Anohina-Naumeca, Alla, and Bjelobaba, Sonja. "Testing of detection tools for AI-generated text". SpringerLink, 2023. Available at: https://link.springer.com/article/10.1007/s40979-023-00146-z; Mitchell, Eric, Lee, Yoonho, Khazatsky, Alexander, Manning, Christopher D., and Finn, Chelsea. "DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature". Available at: https://openreview.net/pdf?id=UiAyIILXRd; Pan, Wei Hung, Chok, Ming Jie, and Wong, Jonathan Leong Shan. "Assessing AI Detectors in Identifying AI-Generated Code: Implications for Education". IEEE Xplore, 2023. Available at: https://ieeexplore.ieee.org/document/10554754; Li, Yafu, Li, Qintong, and Cui, Leyang. "MAGE: Machine-generated Text Detection in the Wild". Available at: https://arxiv.org/pdf/2305.13242; Xu, Zhenyu, and Sheng, Victor S. "Detecting AI-Generated Code Assignments Using Perplexity of Large Language Models". AAAI Conference on Artificial Intelligence, 2023. Available at: https://ojs.aaai.org/index.php/AAAI/article/view/30361; New Era of Artificial Intelligence in Education: Towards a Sustainable Multifaceted Revolution. Available at: https://www.mdpi.com/2071-1050/15/16/12451; The role and impact of ChatGPT in educational practices: insights from an Australian higher education case study. Available at: https://link.springer.com/article/10.1007/s44217-024-00126-6; https://hdl.handle.net/1992/75503; instname:Universidad de los Andes; reponame:Repositorio Institucional Séneca; repourl:https://repositorio.uniandes.edu.co/
Availability: https://hdl.handle.net/1992/75503
Rights: Attribution-NonCommercial-NoDerivatives 4.0 International ; http://creativecommons.org/licenses/by-nc-nd/4.0/ ; info:eu-repo/semantics/embargoedAccess ; http://purl.org/coar/access_right/c_f1cf
Accession Number: edsbas.95086CC5
Database: BASE
Be the first to leave a comment!
You must be logged in first