AI-Generated code detection: an examination of current tools in education

Gespeichert in:
Bibliographische Detailangaben
Titel: AI-Generated code detection: an examination of current tools in education
Autoren: Cuellar Argotty, Juan Esteban
Weitere Verfasser: Manrique Piramanrique, Rubén Francisco, Facultad de Ingeniería
Verlagsinformationen: Universidad de los Andes
Ingeniería de Sistemas y Computación
Facultad de Ingeniería
Departamento de Ingeniería de Sistemas y Computación
Publikationsjahr: 2025
Bestand: Universidad de los Andes Colombia: Séneca
Schlagwörter: AI-generated code, AI-Generated Code Detection, Software Engineering Education, Ingeniería
Beschreibung: This document explores the challenge of detecting AI-generated Python code in education, highlighting limitations of current detection tools, especially against simple obfuscation techniques. It emphasizes the need for advanced, resilient detection methods and ethical AI use in academic settings. ; This document explores the challenge of detecting AI-generated Python code within educational settings, focusing on first-semester student solutions on the Senecode platform. It outlines the creation of a dataset combining both human-written and AI-generated code (across multiple obfuscation variants) and evaluates seven widely used AI detectors. Despite each tool’s strengths in certain areas—such as high precision or high recall—none consistently excels, and simple code modifications substantially reduce detection accuracy. The study underscores the trade-off between minimizing false positives and maximizing true detection, highlighting the risk of unjustly penalizing students or overlooking AI misuse. Recommendations include developing more advanced, code-specific detection methods, employing a multi-layer approach that integrates human oversight, and fostering ethical AI use through clear academic policies. ; Pregrado
Publikationsart: bachelor thesis
Dateibeschreibung: 29 páginas; application/pdf
Sprache: English
Relation: Uchendu, Adaku, Venkatraman, Saranya, Le, Thai, and Lee, Dongwon. "Catch Me If You GPT: Tutorial on Deepfake Texts". Available at: https://aclanthology.org/2024.naacl-tutorials.1.pdf; Weber-Wulff, Debora, Anohina-Naumeca, Alla, and Bjelobaba, Sonja. "Testing of detection tools for AI-generated text". SpringerLink, 2023. Available at: https://link.springer.com/article/10.1007/s40979-023-00146-z; Mitchell, Eric, Lee, Yoonho, Khazatsky, Alexander, Manning, Christopher D., and Finn, Chelsea. "DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature". Available at: https://openreview.net/pdf?id=UiAyIILXRd; Pan, Wei Hung, Chok, Ming Jie, and Wong, Jonathan Leong Shan. "Assessing AI Detectors in Identifying AI-Generated Code: Implications for Education". IEEE Xplore, 2023. Available at: https://ieeexplore.ieee.org/document/10554754; Li, Yafu, Li, Qintong, and Cui, Leyang. "MAGE: Machine-generated Text Detection in the Wild". Available at: https://arxiv.org/pdf/2305.13242; Xu, Zhenyu, and Sheng, Victor S. "Detecting AI-Generated Code Assignments Using Perplexity of Large Language Models". AAAI Conference on Artificial Intelligence, 2023. Available at: https://ojs.aaai.org/index.php/AAAI/article/view/30361; New Era of Artificial Intelligence in Education: Towards a Sustainable Multifaceted Revolution. Available at: https://www.mdpi.com/2071-1050/15/16/12451; The role and impact of ChatGPT in educational practices: insights from an Australian higher education case study. Available at: https://link.springer.com/article/10.1007/s44217-024-00126-6; https://hdl.handle.net/1992/75503; instname:Universidad de los Andes; reponame:Repositorio Institucional Séneca; repourl:https://repositorio.uniandes.edu.co/
Verfügbarkeit: https://hdl.handle.net/1992/75503
Rights: Attribution-NonCommercial-NoDerivatives 4.0 International ; http://creativecommons.org/licenses/by-nc-nd/4.0/ ; info:eu-repo/semantics/embargoedAccess ; http://purl.org/coar/access_right/c_f1cf
Dokumentencode: edsbas.95086CC5
Datenbank: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://hdl.handle.net/1992/75503#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Argotty%20C
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.95086CC5
RelevancyScore: 861
AccessLevel: 3
PubType: Dissertation/ Thesis
PubTypeId: dissertation
PreciseRelevancyScore: 861.3056640625
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: AI-Generated code detection: an examination of current tools in education
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Cuellar+Argotty%2C+Juan+Esteban%22">Cuellar Argotty, Juan Esteban</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Manrique Piramanrique, Rubén Francisco<br />Facultad de Ingeniería
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Universidad de los Andes<br />Ingeniería de Sistemas y Computación<br />Facultad de Ingeniería<br />Departamento de Ingeniería de Sistemas y Computación
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2025
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Universidad de los Andes Colombia: Séneca
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22AI-generated+code%22">AI-generated code</searchLink><br /><searchLink fieldCode="DE" term="%22AI-Generated+Code+Detection%22">AI-Generated Code Detection</searchLink><br /><searchLink fieldCode="DE" term="%22Software+Engineering+Education%22">Software Engineering Education</searchLink><br /><searchLink fieldCode="DE" term="%22Ingeniería%22">Ingeniería</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: This document explores the challenge of detecting AI-generated Python code in education, highlighting limitations of current detection tools, especially against simple obfuscation techniques. It emphasizes the need for advanced, resilient detection methods and ethical AI use in academic settings. ; This document explores the challenge of detecting AI-generated Python code within educational settings, focusing on first-semester student solutions on the Senecode platform. It outlines the creation of a dataset combining both human-written and AI-generated code (across multiple obfuscation variants) and evaluates seven widely used AI detectors. Despite each tool’s strengths in certain areas—such as high precision or high recall—none consistently excels, and simple code modifications substantially reduce detection accuracy. The study underscores the trade-off between minimizing false positives and maximizing true detection, highlighting the risk of unjustly penalizing students or overlooking AI misuse. Recommendations include developing more advanced, code-specific detection methods, employing a multi-layer approach that integrates human oversight, and fostering ethical AI use through clear academic policies. ; Pregrado
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: bachelor thesis
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: 29 páginas; application/pdf
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: Uchendu, Adaku, Venkatraman, Saranya, Le, Thai, and Lee, Dongwon. "Catch Me If You GPT: Tutorial on Deepfake Texts". Available at: https://aclanthology.org/2024.naacl-tutorials.1.pdf; Weber-Wulff, Debora, Anohina-Naumeca, Alla, and Bjelobaba, Sonja. "Testing of detection tools for AI-generated text". SpringerLink, 2023. Available at: https://link.springer.com/article/10.1007/s40979-023-00146-z; Mitchell, Eric, Lee, Yoonho, Khazatsky, Alexander, Manning, Christopher D., and Finn, Chelsea. "DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature". Available at: https://openreview.net/pdf?id=UiAyIILXRd; Pan, Wei Hung, Chok, Ming Jie, and Wong, Jonathan Leong Shan. "Assessing AI Detectors in Identifying AI-Generated Code: Implications for Education". IEEE Xplore, 2023. Available at: https://ieeexplore.ieee.org/document/10554754; Li, Yafu, Li, Qintong, and Cui, Leyang. "MAGE: Machine-generated Text Detection in the Wild". Available at: https://arxiv.org/pdf/2305.13242; Xu, Zhenyu, and Sheng, Victor S. "Detecting AI-Generated Code Assignments Using Perplexity of Large Language Models". AAAI Conference on Artificial Intelligence, 2023. Available at: https://ojs.aaai.org/index.php/AAAI/article/view/30361; New Era of Artificial Intelligence in Education: Towards a Sustainable Multifaceted Revolution. Available at: https://www.mdpi.com/2071-1050/15/16/12451; The role and impact of ChatGPT in educational practices: insights from an Australian higher education case study. Available at: https://link.springer.com/article/10.1007/s44217-024-00126-6; https://hdl.handle.net/1992/75503; instname:Universidad de los Andes; reponame:Repositorio Institucional Séneca; repourl:https://repositorio.uniandes.edu.co/
– Name: URL
  Label: Availability
  Group: URL
  Data: https://hdl.handle.net/1992/75503
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: Attribution-NonCommercial-NoDerivatives 4.0 International ; http://creativecommons.org/licenses/by-nc-nd/4.0/ ; info:eu-repo/semantics/embargoedAccess ; http://purl.org/coar/access_right/c_f1cf
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.95086CC5
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.95086CC5
RecordInfo BibRecord:
  BibEntity:
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: AI-generated code
        Type: general
      – SubjectFull: AI-Generated Code Detection
        Type: general
      – SubjectFull: Software Engineering Education
        Type: general
      – SubjectFull: Ingeniería
        Type: general
    Titles:
      – TitleFull: AI-Generated code detection: an examination of current tools in education
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Cuellar Argotty, Juan Esteban
      – PersonEntity:
          Name:
            NameFull: Manrique Piramanrique, Rubén Francisco
      – PersonEntity:
          Name:
            NameFull: Facultad de Ingeniería
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-locals
              Value: edsbas
ResultId 1