A Deep Learning approach to predict software bugs using micro patterns and software metrics

Gespeichert in:
Bibliographische Detailangaben
Titel: A Deep Learning approach to predict software bugs using micro patterns and software metrics
Autoren: Brumfield, Marcus
Quelle: Theses and Dissertations
Verlagsinformationen: Scholars Junction
Publikationsjahr: 2020
Schlagwörter: Deep Learning, Traceable Code Patterns, Software Metrics
Beschreibung: Software bugs prediction is one of the most active research areas in the software engineering community. The process of testing and debugging code proves to be costly during the software development life cycle. Software metrics measure the quality of source code to identify software bugs and vulnerabilities. Traceable code patterns are able to de- scribe code at a finer granularity level to measure quality. Micro patterns will be used in this research to mechanically describe java code at the class level. Machine learning has also been introduced for bug prediction to localize source code for testing and debugging. Deep Learning is a branch of Machine Learning that is relatively new. This research looks to improve the prediction of software bugs by utilizing micro patterns with deep learning techniques. Software bug prediction at a finer granularity level will enable developers to localize code to test and debug during the development process.
Publikationsart: text
Dateibeschreibung: application/pdf
Sprache: unknown
Relation: https://scholarsjunction.msstate.edu/td/101; https://scholarsjunction.msstate.edu/context/td/article/1100/viewcontent/Marcus_Brumfield_Thesis.pdf
Verfügbarkeit: https://scholarsjunction.msstate.edu/td/101
https://scholarsjunction.msstate.edu/context/td/article/1100/viewcontent/Marcus_Brumfield_Thesis.pdf
Dokumentencode: edsbas.92F2BEE1
Datenbank: BASE
Beschreibung
Abstract:Software bugs prediction is one of the most active research areas in the software engineering community. The process of testing and debugging code proves to be costly during the software development life cycle. Software metrics measure the quality of source code to identify software bugs and vulnerabilities. Traceable code patterns are able to de- scribe code at a finer granularity level to measure quality. Micro patterns will be used in this research to mechanically describe java code at the class level. Machine learning has also been introduced for bug prediction to localize source code for testing and debugging. Deep Learning is a branch of Machine Learning that is relatively new. This research looks to improve the prediction of software bugs by utilizing micro patterns with deep learning techniques. Software bug prediction at a finer granularity level will enable developers to localize code to test and debug during the development process.