Automatic SQL query generation
Uloženo v:
| Název: | Automatic SQL query generation |
|---|---|
| Autoři: | Arbabifard, Kamyar |
| Přispěvatelé: | Gudivada, Venkat N, Computer Science |
| Informace o vydavateli: | East Carolina University |
| Rok vydání: | 2017 |
| Sbírka: | East Carolina University: The ScholarShip at ECU |
| Témata: | Personalized Learning, Question Generation, SQL (Computer program language), MOOCs (Web-based instruction), Educational evaluation |
| Popis: | Automatic generation of questions for learning assessment has been an area of research interest for long. The advent of Massive Open Online Courses (MOOCs) as well as the goal of providing immediate contextualized feedback to enhance student learning has created renewed interest in automatic question generation. This thesis motivates the automatic question generation problem, gives an overview of the current approaches, and describes the proposed novel approach to automatic generation of SQL queries using the notion of grammar graph. |
| Druh dokumentu: | master thesis |
| Popis souboru: | application/pdf |
| Jazyk: | English |
| Relation: | http://hdl.handle.net/10342/6401 |
| Dostupnost: | http://hdl.handle.net/10342/6401 |
| Přístupové číslo: | edsbas.87EF884C |
| Databáze: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: http://hdl.handle.net/10342/6401# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Arbabifard%20K Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.87EF884C RelevancyScore: 717 AccessLevel: 3 PubType: Dissertation/ Thesis PubTypeId: dissertation PreciseRelevancyScore: 716.807495117188 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Automatic SQL query generation – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Arbabifard%2C+Kamyar%22">Arbabifard, Kamyar</searchLink> – Name: Author Label: Contributors Group: Au Data: Gudivada, Venkat N<br />Computer Science – Name: Publisher Label: Publisher Information Group: PubInfo Data: East Carolina University – Name: DatePubCY Label: Publication Year Group: Date Data: 2017 – Name: Subset Label: Collection Group: HoldingsInfo Data: East Carolina University: The ScholarShip at ECU – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Personalized+Learning%22">Personalized Learning</searchLink><br /><searchLink fieldCode="DE" term="%22Question+Generation%22">Question Generation</searchLink><br /><searchLink fieldCode="DE" term="%22SQL+%28Computer+program+language%29%22">SQL (Computer program language)</searchLink><br /><searchLink fieldCode="DE" term="%22MOOCs+%28Web-based+instruction%29%22">MOOCs (Web-based instruction)</searchLink><br /><searchLink fieldCode="DE" term="%22Educational+evaluation%22">Educational evaluation</searchLink> – Name: Abstract Label: Description Group: Ab Data: Automatic generation of questions for learning assessment has been an area of research interest for long. The advent of Massive Open Online Courses (MOOCs) as well as the goal of providing immediate contextualized feedback to enhance student learning has created renewed interest in automatic question generation. This thesis motivates the automatic question generation problem, gives an overview of the current approaches, and describes the proposed novel approach to automatic generation of SQL queries using the notion of grammar graph. – Name: TypeDocument Label: Document Type Group: TypDoc Data: master thesis – Name: Format Label: File Description Group: SrcInfo Data: application/pdf – Name: Language Label: Language Group: Lang Data: English – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: http://hdl.handle.net/10342/6401 – Name: URL Label: Availability Group: URL Data: http://hdl.handle.net/10342/6401 – Name: AN Label: Accession Number Group: ID Data: edsbas.87EF884C |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.87EF884C |
| RecordInfo | BibRecord: BibEntity: Languages: – Text: English Subjects: – SubjectFull: Personalized Learning Type: general – SubjectFull: Question Generation Type: general – SubjectFull: SQL (Computer program language) Type: general – SubjectFull: MOOCs (Web-based instruction) Type: general – SubjectFull: Educational evaluation Type: general Titles: – TitleFull: Automatic SQL query generation Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Arbabifard, Kamyar – PersonEntity: Name: NameFull: Gudivada, Venkat N – PersonEntity: Name: NameFull: Computer Science IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2017 Identifiers: – Type: issn-locals Value: edsbas |
| ResultId | 1 |
Nájsť tento článok vo Web of Science