MATHICSE Technical Report : Comparison of Clenshaw-Curtis and Leja quasi-optimal sparse grids for the approximation of random PDEs

Saved in:
Bibliographic Details
Title: MATHICSE Technical Report : Comparison of Clenshaw-Curtis and Leja quasi-optimal sparse grids for the approximation of random PDEs
Authors: Nobile, Fabio, Tamellini, Lorenzo, Tempone, Raúl
Contributors: MATHICSE-Group
Publisher Information: MATHICSE
Écublens
Publication Year: 2019
Collection: Ecole Polytechnique Fédérale Lausanne (EPFL): Infoscience
Subject Terms: Uncertainty Quantication, PDEs with random data, linear elliptic equations, Stochastic Collocation methods, Sparse grids approximation, Leja points, Clenshaw{Curtis points)
Description: In this work we compare numerically different families of nested quadrature points, i.e. the classic Clenshaw{Curtis and various kinds of Leja points, in the context of the quasi-optimal sparse grid approximation of random elliptic PDEs. Numerical evidence suggests that the performances of both families are essentially comparable within such framework. ; CSQI ; MATHICSE Technical Report Nr. 41.2014 September 2014
Document Type: report
Language: unknown
Relation: https://infoscience.epfl.ch/record/263229/files/41.2014_FN-LT-RTnew.pdf; #PLACEHOLDER_PARENT_METADATA_VALUE#; https://infoscience.epfl.ch/handle/20.500.14299/153709
DOI: 10.5075/epfl-MATHICSE-263229
Availability: https://doi.org/10.5075/epfl-MATHICSE-263229
https://infoscience.epfl.ch/handle/20.500.14299/153709
https://hdl.handle.net/20.500.14299/153709
Accession Number: edsbas.7F79104D
Database: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.5075/epfl-MATHICSE-263229#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Nobile%20F
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.7F79104D
RelevancyScore: 808
AccessLevel: 3
PubType: Report
PubTypeId: report
PreciseRelevancyScore: 807.664306640625
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: MATHICSE Technical Report : Comparison of Clenshaw-Curtis and Leja quasi-optimal sparse grids for the approximation of random PDEs
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Nobile%2C+Fabio%22">Nobile, Fabio</searchLink><br /><searchLink fieldCode="AR" term="%22Tamellini%2C+Lorenzo%22">Tamellini, Lorenzo</searchLink><br /><searchLink fieldCode="AR" term="%22Tempone%2C+Raúl%22">Tempone, Raúl</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: MATHICSE-Group
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: MATHICSE<br />Écublens
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2019
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Ecole Polytechnique Fédérale Lausanne (EPFL): Infoscience
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Uncertainty+Quantication%22">Uncertainty Quantication</searchLink><br /><searchLink fieldCode="DE" term="%22PDEs+with+random+data%22">PDEs with random data</searchLink><br /><searchLink fieldCode="DE" term="%22linear+elliptic+equations%22">linear elliptic equations</searchLink><br /><searchLink fieldCode="DE" term="%22Stochastic+Collocation+methods%22">Stochastic Collocation methods</searchLink><br /><searchLink fieldCode="DE" term="%22Sparse+grids+approximation%22">Sparse grids approximation</searchLink><br /><searchLink fieldCode="DE" term="%22Leja+points%22">Leja points</searchLink><br /><searchLink fieldCode="DE" term="%22Clenshaw{Curtis+points%29%22">Clenshaw{Curtis points)</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: In this work we compare numerically different families of nested quadrature points, i.e. the classic Clenshaw{Curtis and various kinds of Leja points, in the context of the quasi-optimal sparse grid approximation of random elliptic PDEs. Numerical evidence suggests that the performances of both families are essentially comparable within such framework. ; CSQI ; MATHICSE Technical Report Nr. 41.2014 September 2014
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: report
– Name: Language
  Label: Language
  Group: Lang
  Data: unknown
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://infoscience.epfl.ch/record/263229/files/41.2014_FN-LT-RTnew.pdf; #PLACEHOLDER_PARENT_METADATA_VALUE#; https://infoscience.epfl.ch/handle/20.500.14299/153709
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.5075/epfl-MATHICSE-263229
– Name: URL
  Label: Availability
  Group: URL
  Data: https://doi.org/10.5075/epfl-MATHICSE-263229<br />https://infoscience.epfl.ch/handle/20.500.14299/153709<br />https://hdl.handle.net/20.500.14299/153709
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.7F79104D
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.7F79104D
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.5075/epfl-MATHICSE-263229
    Languages:
      – Text: unknown
    Subjects:
      – SubjectFull: Uncertainty Quantication
        Type: general
      – SubjectFull: PDEs with random data
        Type: general
      – SubjectFull: linear elliptic equations
        Type: general
      – SubjectFull: Stochastic Collocation methods
        Type: general
      – SubjectFull: Sparse grids approximation
        Type: general
      – SubjectFull: Leja points
        Type: general
      – SubjectFull: Clenshaw{Curtis points)
        Type: general
    Titles:
      – TitleFull: MATHICSE Technical Report : Comparison of Clenshaw-Curtis and Leja quasi-optimal sparse grids for the approximation of random PDEs
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Nobile, Fabio
      – PersonEntity:
          Name:
            NameFull: Tamellini, Lorenzo
      – PersonEntity:
          Name:
            NameFull: Tempone, Raúl
      – PersonEntity:
          Name:
            NameFull: MATHICSE-Group
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2019
          Identifiers:
            – Type: issn-locals
              Value: edsbas
ResultId 1