MATHICSE Technical Report : Comparison of Clenshaw-Curtis and Leja quasi-optimal sparse grids for the approximation of random PDEs
Saved in:
| Title: | MATHICSE Technical Report : Comparison of Clenshaw-Curtis and Leja quasi-optimal sparse grids for the approximation of random PDEs |
|---|---|
| Authors: | Nobile, Fabio, Tamellini, Lorenzo, Tempone, Raúl |
| Contributors: | MATHICSE-Group |
| Publisher Information: | MATHICSE Écublens |
| Publication Year: | 2019 |
| Collection: | Ecole Polytechnique Fédérale Lausanne (EPFL): Infoscience |
| Subject Terms: | Uncertainty Quantication, PDEs with random data, linear elliptic equations, Stochastic Collocation methods, Sparse grids approximation, Leja points, Clenshaw{Curtis points) |
| Description: | In this work we compare numerically different families of nested quadrature points, i.e. the classic Clenshaw{Curtis and various kinds of Leja points, in the context of the quasi-optimal sparse grid approximation of random elliptic PDEs. Numerical evidence suggests that the performances of both families are essentially comparable within such framework. ; CSQI ; MATHICSE Technical Report Nr. 41.2014 September 2014 |
| Document Type: | report |
| Language: | unknown |
| Relation: | https://infoscience.epfl.ch/record/263229/files/41.2014_FN-LT-RTnew.pdf; #PLACEHOLDER_PARENT_METADATA_VALUE#; https://infoscience.epfl.ch/handle/20.500.14299/153709 |
| DOI: | 10.5075/epfl-MATHICSE-263229 |
| Availability: | https://doi.org/10.5075/epfl-MATHICSE-263229 https://infoscience.epfl.ch/handle/20.500.14299/153709 https://hdl.handle.net/20.500.14299/153709 |
| Accession Number: | edsbas.7F79104D |
| Database: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.5075/epfl-MATHICSE-263229# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Nobile%20F Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.7F79104D RelevancyScore: 808 AccessLevel: 3 PubType: Report PubTypeId: report PreciseRelevancyScore: 807.664306640625 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: MATHICSE Technical Report : Comparison of Clenshaw-Curtis and Leja quasi-optimal sparse grids for the approximation of random PDEs – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Nobile%2C+Fabio%22">Nobile, Fabio</searchLink><br /><searchLink fieldCode="AR" term="%22Tamellini%2C+Lorenzo%22">Tamellini, Lorenzo</searchLink><br /><searchLink fieldCode="AR" term="%22Tempone%2C+Raúl%22">Tempone, Raúl</searchLink> – Name: Author Label: Contributors Group: Au Data: MATHICSE-Group – Name: Publisher Label: Publisher Information Group: PubInfo Data: MATHICSE<br />Écublens – Name: DatePubCY Label: Publication Year Group: Date Data: 2019 – Name: Subset Label: Collection Group: HoldingsInfo Data: Ecole Polytechnique Fédérale Lausanne (EPFL): Infoscience – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Uncertainty+Quantication%22">Uncertainty Quantication</searchLink><br /><searchLink fieldCode="DE" term="%22PDEs+with+random+data%22">PDEs with random data</searchLink><br /><searchLink fieldCode="DE" term="%22linear+elliptic+equations%22">linear elliptic equations</searchLink><br /><searchLink fieldCode="DE" term="%22Stochastic+Collocation+methods%22">Stochastic Collocation methods</searchLink><br /><searchLink fieldCode="DE" term="%22Sparse+grids+approximation%22">Sparse grids approximation</searchLink><br /><searchLink fieldCode="DE" term="%22Leja+points%22">Leja points</searchLink><br /><searchLink fieldCode="DE" term="%22Clenshaw{Curtis+points%29%22">Clenshaw{Curtis points)</searchLink> – Name: Abstract Label: Description Group: Ab Data: In this work we compare numerically different families of nested quadrature points, i.e. the classic Clenshaw{Curtis and various kinds of Leja points, in the context of the quasi-optimal sparse grid approximation of random elliptic PDEs. Numerical evidence suggests that the performances of both families are essentially comparable within such framework. ; CSQI ; MATHICSE Technical Report Nr. 41.2014 September 2014 – Name: TypeDocument Label: Document Type Group: TypDoc Data: report – Name: Language Label: Language Group: Lang Data: unknown – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://infoscience.epfl.ch/record/263229/files/41.2014_FN-LT-RTnew.pdf; #PLACEHOLDER_PARENT_METADATA_VALUE#; https://infoscience.epfl.ch/handle/20.500.14299/153709 – Name: DOI Label: DOI Group: ID Data: 10.5075/epfl-MATHICSE-263229 – Name: URL Label: Availability Group: URL Data: https://doi.org/10.5075/epfl-MATHICSE-263229<br />https://infoscience.epfl.ch/handle/20.500.14299/153709<br />https://hdl.handle.net/20.500.14299/153709 – Name: AN Label: Accession Number Group: ID Data: edsbas.7F79104D |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.7F79104D |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.5075/epfl-MATHICSE-263229 Languages: – Text: unknown Subjects: – SubjectFull: Uncertainty Quantication Type: general – SubjectFull: PDEs with random data Type: general – SubjectFull: linear elliptic equations Type: general – SubjectFull: Stochastic Collocation methods Type: general – SubjectFull: Sparse grids approximation Type: general – SubjectFull: Leja points Type: general – SubjectFull: Clenshaw{Curtis points) Type: general Titles: – TitleFull: MATHICSE Technical Report : Comparison of Clenshaw-Curtis and Leja quasi-optimal sparse grids for the approximation of random PDEs Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Nobile, Fabio – PersonEntity: Name: NameFull: Tamellini, Lorenzo – PersonEntity: Name: NameFull: Tempone, Raúl – PersonEntity: Name: NameFull: MATHICSE-Group IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2019 Identifiers: – Type: issn-locals Value: edsbas |
| ResultId | 1 |
Nájsť tento článok vo Web of Science