Genealogía de permutaciones simples de orden una potencia de dos

Uloženo v:
Podrobná bibliografie
Název: Genealogía de permutaciones simples de orden una potencia de dos
Autoři: Acosta Humánez, Primitivo Belén
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
Rok vydání: 2006
Sbírka: Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledge
Témata: Combinatorics, Bernhardt's theorem - Teorema de Bernhardt, Markov's graphs - Grafos de Markov, partial ordering of permutations - ordenamiento parcial de permutaciones, pasting and reversing operations - operaciones pegamiento y voltear, Sharkovskii's theorem - teorema de Sharkovskii, simple orbits of Block - órbitas simples de Block, Combinacions (Matemàtica), Classificació AMS::05 Combinatorics::05A Enumerative combinatorics
Popis: The aim of this paper is to show some properties of simple permutations with order a power of two and to give a combinatorial formula to determine its genealogy involving two new operations: the \textit{pasting} operation and \textit{reversing}. Simple permutations are very important because corresponds to primary orbits or minimal orbits and in particular, simple permutations with order a power of two are related with the right side in the Sharkovskii's order.
Druh dokumentu: article in journal/newspaper
Popis souboru: 13 p.; application/pdf
Jazyk: Spanish; Castilian
Relation: http://hdl.handle.net/2117/2232
Dostupnost: http://hdl.handle.net/2117/2232
Rights: Attribution-NonCommercial-NoDerivs 2.5 Spain ; http://creativecommons.org/licenses/by-nc-nd/2.5/es/ ; Open Access
Přístupové číslo: edsbas.7B05BAE
Databáze: BASE
Popis
Abstrakt:The aim of this paper is to show some properties of simple permutations with order a power of two and to give a combinatorial formula to determine its genealogy involving two new operations: the \textit{pasting} operation and \textit{reversing}. Simple permutations are very important because corresponds to primary orbits or minimal orbits and in particular, simple permutations with order a power of two are related with the right side in the Sharkovskii's order.