Comparison of Two-pass Algorithms for Dynamic Topic Modelling Based on Matrix Decompositions

Uloženo v:
Podrobná bibliografie
Název: Comparison of Two-pass Algorithms for Dynamic Topic Modelling Based on Matrix Decompositions
Autoři: Cardiff, John, Skitalinskaya, Gabriella, Alexandrov, Mikhail
Zdroj: Conference Papers
Informace o vydavateli: Technological University Dublin
Rok vydání: 2017
Sbírka: Dublin Institute of Technology: ARROW@DIT (Archiving Research Resources on he Web)
Témata: Dynamic Topic Modeling, Matrix Decomposition, Latent Dirichlet Allocation, Computer Sciences, Numerical Analysis and Scientific Computing
Popis: In this paper we present a two-pass algorithm based on different matrix decompositions, such as LSI, PCA, ICA and NMF, which allows tracking of the evolution of topics over time. The proposed dynamic topic models as output give an easily interpreted overview of topics found in a sequentially organized set of documents that does not require further processing. Each topic is presented by a user-specified number of top-terms. Such an approach to topic modeling if applied to, for example, a news article data set, can be convenient and useful for economists, sociologists, political scientists. The proposed approach allows to achieve results comparable to those obtained using complex probabilistic models, such as LDA.
Druh dokumentu: conference object
Popis souboru: application/pdf
Jazyk: unknown
Relation: https://arrow.tudublin.ie/ittscicon/11; https://arrow.tudublin.ie/context/ittscicon/article/1011/viewcontent/2017_Skitalinskaya_et_al_Comparison_of_two_pass_algorithms.pdf
DOI: 10.1007/978-3-030-02840-4_3
Dostupnost: https://arrow.tudublin.ie/ittscicon/11
https://doi.org/10.1007/978-3-030-02840-4_3
https://arrow.tudublin.ie/context/ittscicon/article/1011/viewcontent/2017_Skitalinskaya_et_al_Comparison_of_two_pass_algorithms.pdf
Rights: Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence ; http://creativecommons.org/licenses/by/4.0/
Přístupové číslo: edsbas.7ACE3C23
Databáze: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://arrow.tudublin.ie/ittscicon/11#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Cardiff%20J
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.7ACE3C23
RelevancyScore: 886
AccessLevel: 3
PubType: Conference
PubTypeId: conference
PreciseRelevancyScore: 886.106628417969
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Comparison of Two-pass Algorithms for Dynamic Topic Modelling Based on Matrix Decompositions
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Cardiff%2C+John%22">Cardiff, John</searchLink><br /><searchLink fieldCode="AR" term="%22Skitalinskaya%2C+Gabriella%22">Skitalinskaya, Gabriella</searchLink><br /><searchLink fieldCode="AR" term="%22Alexandrov%2C+Mikhail%22">Alexandrov, Mikhail</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Conference Papers
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Technological University Dublin
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2017
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Dublin Institute of Technology: ARROW@DIT (Archiving Research Resources on he Web)
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Dynamic+Topic+Modeling%22">Dynamic Topic Modeling</searchLink><br /><searchLink fieldCode="DE" term="%22Matrix+Decomposition%22">Matrix Decomposition</searchLink><br /><searchLink fieldCode="DE" term="%22Latent+Dirichlet+Allocation%22">Latent Dirichlet Allocation</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+Sciences%22">Computer Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Numerical+Analysis+and+Scientific+Computing%22">Numerical Analysis and Scientific Computing</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: In this paper we present a two-pass algorithm based on different matrix decompositions, such as LSI, PCA, ICA and NMF, which allows tracking of the evolution of topics over time. The proposed dynamic topic models as output give an easily interpreted overview of topics found in a sequentially organized set of documents that does not require further processing. Each topic is presented by a user-specified number of top-terms. Such an approach to topic modeling if applied to, for example, a news article data set, can be convenient and useful for economists, sociologists, political scientists. The proposed approach allows to achieve results comparable to those obtained using complex probabilistic models, such as LDA.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: conference object
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: application/pdf
– Name: Language
  Label: Language
  Group: Lang
  Data: unknown
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://arrow.tudublin.ie/ittscicon/11; https://arrow.tudublin.ie/context/ittscicon/article/1011/viewcontent/2017_Skitalinskaya_et_al_Comparison_of_two_pass_algorithms.pdf
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1007/978-3-030-02840-4_3
– Name: URL
  Label: Availability
  Group: URL
  Data: https://arrow.tudublin.ie/ittscicon/11<br />https://doi.org/10.1007/978-3-030-02840-4_3<br />https://arrow.tudublin.ie/context/ittscicon/article/1011/viewcontent/2017_Skitalinskaya_et_al_Comparison_of_two_pass_algorithms.pdf
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence ; http://creativecommons.org/licenses/by/4.0/
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.7ACE3C23
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.7ACE3C23
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1007/978-3-030-02840-4_3
    Languages:
      – Text: unknown
    Subjects:
      – SubjectFull: Dynamic Topic Modeling
        Type: general
      – SubjectFull: Matrix Decomposition
        Type: general
      – SubjectFull: Latent Dirichlet Allocation
        Type: general
      – SubjectFull: Computer Sciences
        Type: general
      – SubjectFull: Numerical Analysis and Scientific Computing
        Type: general
    Titles:
      – TitleFull: Comparison of Two-pass Algorithms for Dynamic Topic Modelling Based on Matrix Decompositions
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Cardiff, John
      – PersonEntity:
          Name:
            NameFull: Skitalinskaya, Gabriella
      – PersonEntity:
          Name:
            NameFull: Alexandrov, Mikhail
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2017
          Identifiers:
            – Type: issn-locals
              Value: edsbas
            – Type: issn-locals
              Value: edsbas.oa
          Titles:
            – TitleFull: Conference Papers
              Type: main
ResultId 1