Cascaded Sliding-Window-Based Relativistic GAN Fusion for Perceptual and Consistent Video Super-Resolution
Gespeichert in:
| Titel: | Cascaded Sliding-Window-Based Relativistic GAN Fusion for Perceptual and Consistent Video Super-Resolution |
|---|---|
| Autoren: | Li, Dingyi |
| Weitere Verfasser: | School of Computer Science and Engineering Nanjing, Nanjing University of Science and Technology (NJUST), Zhongzhi Shi, Michael Witbrock, Qi Tian, TC 12 |
| Quelle: | IFIP Advances in Information and Communication Technology ; 6th International Conference on Intelligence Science (ICIS) ; https://inria.hal.science/hal-05142880 ; 6th International Conference on Intelligence Science (ICIS), Oct 2024, Nanjing, China. pp.232-247, ⟨10.1007/978-3-031-71253-1_17⟩ |
| Verlagsinformationen: | CCSD Springer Nature Switzerland |
| Publikationsjahr: | 2024 |
| Schlagwörter: | Video Super-Resolution, Perceptual Quality, Temporal Consistency, Information Science, Intelligent Information Processing, [INFO]Computer Science [cs] |
| Geographisches Schlagwort: | Nanjing, China |
| Beschreibung: | Part 5: Perceptual Intelligence ; International audience ; Perceptual video super-resolution aims at converting low-resolution videos to visually appealing high-resolution ones. It may lead to temporal inconsistency due to the drastically changing outputs. In this paper, we propose cascaded sliding-window-based relativistic GAN (Generative Adversarial Network) fusion for perceptual and consistent video super-resolution (PC-VSR). Firstly, cascaded sliding-window-based relativistic GAN is designed to extract more useful information. It enlarges the temporal receptive field of sliding-window-based model in each step. It is able to enhance perceptual quality and compensate temporal consistency progressively and sufficiently. The trained separate refinement generator networks are fused into a final refinement generator. The final refinement generator can be calculated recursively at the testing stage. With our generator fusion, the parameter number is reduced and good quality is maintained. Extensive experimental results demonstrate that our approach outperforms state-of-the-art super-resolution methods in terms of perceptual quality. Our method also achieves good temporal consistency and per-pixel accuracy, compared with other perceptual approaches. |
| Publikationsart: | conference object |
| Sprache: | English |
| DOI: | 10.1007/978-3-031-71253-1_17 |
| Verfügbarkeit: | https://inria.hal.science/hal-05142880 https://inria.hal.science/hal-05142880v1/document https://inria.hal.science/hal-05142880v1/file/633143_1_En_17_Chapter.pdf https://doi.org/10.1007/978-3-031-71253-1_17 |
| Rights: | http://creativecommons.org/licenses/by/ |
| Dokumentencode: | edsbas.7833912C |
| Datenbank: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://inria.hal.science/hal-05142880# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Li%20D Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.7833912C RelevancyScore: 907 AccessLevel: 3 PubType: Conference PubTypeId: conference PreciseRelevancyScore: 907.306396484375 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Cascaded Sliding-Window-Based Relativistic GAN Fusion for Perceptual and Consistent Video Super-Resolution – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Li%2C+Dingyi%22">Li, Dingyi</searchLink> – Name: Author Label: Contributors Group: Au Data: School of Computer Science and Engineering Nanjing<br />Nanjing University of Science and Technology (NJUST)<br />Zhongzhi Shi<br />Michael Witbrock<br />Qi Tian<br />TC 12 – Name: TitleSource Label: Source Group: Src Data: IFIP Advances in Information and Communication Technology ; 6th International Conference on Intelligence Science (ICIS) ; https://inria.hal.science/hal-05142880 ; 6th International Conference on Intelligence Science (ICIS), Oct 2024, Nanjing, China. pp.232-247, ⟨10.1007/978-3-031-71253-1_17⟩ – Name: Publisher Label: Publisher Information Group: PubInfo Data: CCSD<br />Springer Nature Switzerland – Name: DatePubCY Label: Publication Year Group: Date Data: 2024 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Video+Super-Resolution%22">Video Super-Resolution</searchLink><br /><searchLink fieldCode="DE" term="%22Perceptual+Quality%22">Perceptual Quality</searchLink><br /><searchLink fieldCode="DE" term="%22Temporal+Consistency%22">Temporal Consistency</searchLink><br /><searchLink fieldCode="DE" term="%22Information+Science%22">Information Science</searchLink><br /><searchLink fieldCode="DE" term="%22Intelligent+Information+Processing%22">Intelligent Information Processing</searchLink><br /><searchLink fieldCode="DE" term="%22[INFO]Computer+Science+[cs]%22">[INFO]Computer Science [cs]</searchLink> – Name: Subject Label: Subject Geographic Group: Su Data: <searchLink fieldCode="DE" term="%22Nanjing%22">Nanjing</searchLink><br /><searchLink fieldCode="DE" term="%22China%22">China</searchLink> – Name: Abstract Label: Description Group: Ab Data: Part 5: Perceptual Intelligence ; International audience ; Perceptual video super-resolution aims at converting low-resolution videos to visually appealing high-resolution ones. It may lead to temporal inconsistency due to the drastically changing outputs. In this paper, we propose cascaded sliding-window-based relativistic GAN (Generative Adversarial Network) fusion for perceptual and consistent video super-resolution (PC-VSR). Firstly, cascaded sliding-window-based relativistic GAN is designed to extract more useful information. It enlarges the temporal receptive field of sliding-window-based model in each step. It is able to enhance perceptual quality and compensate temporal consistency progressively and sufficiently. The trained separate refinement generator networks are fused into a final refinement generator. The final refinement generator can be calculated recursively at the testing stage. With our generator fusion, the parameter number is reduced and good quality is maintained. Extensive experimental results demonstrate that our approach outperforms state-of-the-art super-resolution methods in terms of perceptual quality. Our method also achieves good temporal consistency and per-pixel accuracy, compared with other perceptual approaches. – Name: TypeDocument Label: Document Type Group: TypDoc Data: conference object – Name: Language Label: Language Group: Lang Data: English – Name: DOI Label: DOI Group: ID Data: 10.1007/978-3-031-71253-1_17 – Name: URL Label: Availability Group: URL Data: https://inria.hal.science/hal-05142880<br />https://inria.hal.science/hal-05142880v1/document<br />https://inria.hal.science/hal-05142880v1/file/633143_1_En_17_Chapter.pdf<br />https://doi.org/10.1007/978-3-031-71253-1_17 – Name: Copyright Label: Rights Group: Cpyrght Data: http://creativecommons.org/licenses/by/ – Name: AN Label: Accession Number Group: ID Data: edsbas.7833912C |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.7833912C |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1007/978-3-031-71253-1_17 Languages: – Text: English Subjects: – SubjectFull: Nanjing Type: general – SubjectFull: China Type: general – SubjectFull: Video Super-Resolution Type: general – SubjectFull: Perceptual Quality Type: general – SubjectFull: Temporal Consistency Type: general – SubjectFull: Information Science Type: general – SubjectFull: Intelligent Information Processing Type: general – SubjectFull: [INFO]Computer Science [cs] Type: general Titles: – TitleFull: Cascaded Sliding-Window-Based Relativistic GAN Fusion for Perceptual and Consistent Video Super-Resolution Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Li, Dingyi – PersonEntity: Name: NameFull: School of Computer Science and Engineering Nanjing – PersonEntity: Name: NameFull: Nanjing University of Science and Technology (NJUST) – PersonEntity: Name: NameFull: Zhongzhi Shi – PersonEntity: Name: NameFull: Michael Witbrock – PersonEntity: Name: NameFull: Qi Tian – PersonEntity: Name: NameFull: TC 12 IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2024 Identifiers: – Type: issn-locals Value: edsbas Titles: – TitleFull: IFIP Advances in Information and Communication Technology ; 6th International Conference on Intelligence Science (ICIS) ; https://inria.hal.science/hal-05142880 ; 6th International Conference on Intelligence Science (ICIS), Oct 2024, Nanjing, China. pp.232-247, ⟨10.1007/978-3-031-71253-1_17⟩ Type: main |
| ResultId | 1 |
Nájsť tento článok vo Web of Science