Bibliographische Detailangaben
| Titel: |
Minimal contention-free matrices with application to multicasting |
| Autoren: |
Cohen, Johanne, Fraigniaud, Pierre, Mitjana Riera, Margarida |
| Weitere Verfasser: |
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions |
| Publikationsjahr: |
2000 |
| Bestand: |
Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledge |
| Schlagwörter: |
Information and Communication Applications, Inc, Operations research, Computer systems, Graph theory, Application to Multicasting, Minimal Contention-free Matrices, Investigació operativa, Arquitectura de computadors, Grafs, Teoria de, Classificació AMS::68 Computer science::68M Computer system organization, Classificació AMS::05 Combinatorics::05C Graph theory, Classificació AMS::90 Operations research, mathematical programming::90B Operations research and management science, Classificació AMS::94 Information And Communication, Circuits::94A Communication, information |
| Beschreibung: |
In this paper, we show that the multicast problem in trees can be expressed in term of arranging rows and columns of boolean matrices. Given a $p \times q$ matrix $M$ with 0-1 entries, the {\em shadow} of $M$ is defined as a boolean vector $x$ of $q$ entries such that $x_i=0$ if and only if there is no 1-entry in the $i$th column of $M$, and $x_i=1$ otherwise. (The shadow $x$ can also be seen as the binary expression of the integer $x=\sum_{i=1}^{q}x_i 2^{q-i}$. Similarly, every row of $M$ can be seen as the binary expression of an integer.) According to this formalism, the key for solving a multicast problem in trees is shown to be the following. Given a $p \times q$ matrix $M$ with 0-1 entries, finding a matrix $M^*$ such that: 1- $M^*$ has at most one 1-entry per column; 2- every row $r$ of $M^*$ (viewed as the binary expression of an integer) is larger than the corresponding row $r$ of $M$, $1 \leq r \leq p$; and 3- the shadow of $M^*$ (viewed as an integer) is minimum. We show that there is an $O(q(p+q))$ algorithm that returns $M^*$ for any $p \times q$ boolean matrix $M$. The application of this result is the following: Given a {\em directed} tree $T$ whose arcs are oriented from the root toward the leaves, and a subset of nodes $D$, there exists a polynomial-time algorithm that computes an optimal multicast protocol from the root to all nodes of $D$ in the all-port line model. ; Peer Reviewed |
| Publikationsart: |
article in journal/newspaper |
| Dateibeschreibung: |
17 p.; application/pdf |
| Sprache: |
English |
| Relation: |
http://hdl.handle.net/2117/804 |
| Verfügbarkeit: |
http://hdl.handle.net/2117/804 |
| Rights: |
Open Access |
| Dokumentencode: |
edsbas.7330B5E7 |
| Datenbank: |
BASE |