Young equations with singularities
Uloženo v:
| Název: | Young equations with singularities |
|---|---|
| Autoři: | Addona, D, Lorenzi, L, Tessitore, G |
| Přispěvatelé: | Addona, D, Lorenzi, L, Tessitore, G |
| Informace o vydavateli: | Elsevier Ltd GB |
| Rok vydání: | 2024 |
| Sbírka: | Università degli Studi di Milano-Bicocca: BOA (Bicocca Open Archive) |
| Témata: | Mild solutions and their smoothne, Nonlinear Young equation, Semigroups of bounded operator, Singular convolution integral, Settore MATH-03/A - Analisi matematica, Settore MATH-03/B - Probabilità e statistica matematica |
| Popis: | In this paper we prove existence and uniqueness of a mild solution to the Young equation dy(t)=Ay(t)dt+σ(y(t))dx(t), t∈[0,T], y(0)=ψ. Here, A is an unbounded operator which generates a semigroup of bounded linear operators (S(t))t≥0 on a Banach space X, x is a real-valued η-Hölder continuous. Our aim is to reduce, in comparison to Gubinelli et al. (2006) and Addona et al. (2022) (see also Deya et al. (2012) and Gubinelli and Tindel, (2010)), the regularity requirement on the initial datum ψ eventually dropping it. The main tool is the definition of a sewing map for a new class of increments which allows the construction of a Young convolution integral in a general interval [a,b]⊂R when the Xα-norm of the function under the integral sign blows up approaching a and Xα is an intermediate space between X and D(A). |
| Druh dokumentu: | article in journal/newspaper |
| Popis souboru: | STAMPA |
| Jazyk: | English |
| Relation: | info:eu-repo/semantics/altIdentifier/wos/WOS:001165549900001; volume:238; issue:January 2024; firstpage:113401; lastpage:113433; numberofpages:33; journal:NONLINEAR ANALYSIS; https://hdl.handle.net/10281/446158; https://www.sciencedirect.com/science/article/pii/S0362546X23001931 |
| DOI: | 10.1016/j.na.2023.113401 |
| Dostupnost: | https://hdl.handle.net/10281/446158 https://doi.org/10.1016/j.na.2023.113401 https://www.sciencedirect.com/science/article/pii/S0362546X23001931 |
| Rights: | info:eu-repo/semantics/openAccess |
| Přístupové číslo: | edsbas.71CE3FB5 |
| Databáze: | BASE |
| Abstrakt: | In this paper we prove existence and uniqueness of a mild solution to the Young equation dy(t)=Ay(t)dt+σ(y(t))dx(t), t∈[0,T], y(0)=ψ. Here, A is an unbounded operator which generates a semigroup of bounded linear operators (S(t))t≥0 on a Banach space X, x is a real-valued η-Hölder continuous. Our aim is to reduce, in comparison to Gubinelli et al. (2006) and Addona et al. (2022) (see also Deya et al. (2012) and Gubinelli and Tindel, (2010)), the regularity requirement on the initial datum ψ eventually dropping it. The main tool is the definition of a sewing map for a new class of increments which allows the construction of a Young convolution integral in a general interval [a,b]⊂R when the Xα-norm of the function under the integral sign blows up approaching a and Xα is an intermediate space between X and D(A). |
|---|---|
| DOI: | 10.1016/j.na.2023.113401 |
Nájsť tento článok vo Web of Science