Deep learning methods and advancements in digital image forensics ; Méthodes et avancement d’apprentissage profond en criminalistique des images

Uloženo v:
Podrobná bibliografie
Název: Deep learning methods and advancements in digital image forensics ; Méthodes et avancement d’apprentissage profond en criminalistique des images
Autoři: Berthet, Alexandre
Přispěvatelé: Eurecom Sophia Antipolis, Sorbonne Université, Jean-Luc Dugelay
Zdroj: https://theses.hal.science/tel-03859790 ; Computer Aided Engineering. Sorbonne Université, 2022. English. ⟨NNT : 2022SORUS252⟩.
Informace o vydavateli: CCSD
Rok vydání: 2022
Témata: AI-based compression, Camera recognition, Digital image forensics, Contre-Criminalistique, Protocoles d'Évaluation, Compression basée sur l'Intelligence Artificielle, Reconnaissance de Caméras, Criminalistique des Images, [INFO.INFO-IA]Computer Science [cs]/Computer Aided Engineering
Popis: The volume of digital visual data is increasing dramatically year after year. At the same time, image editing has become easier and more precise. Malicious modifications are therefore more accessible. Image forensics provides solutions to ensure the authenticity of digital visual data. Recognition of the source camera and detection of falsified images are among the main tasks. At first, the solutions were classical methods based on the artifacts produced during the creation of a digital image. Then, as in other areas of image processing, the methods moved to deep learning. First, we present a state-of-the-art survey of deep learning methods for image forensics. Our state-of-the-art survey highlights the need to apply pre-processing modules to extract artifacts hidden by image content. We also highlight the problems concerning image recognition evaluation protocols. Furthermore, we address counter-forensics and present compression based on artificial intelligence, which could be considered as an attack. In a second step, this thesis details three progressive evaluation protocols that address camera recognition problems. The final protocol, which is more reliable and reproducible, highlights the impossibility of state-of-the-art methods to recognize cameras in a challenging context. In a third step, we study the impact of compression based on artificial intelligence on two tasks analyzing compression artifacts: tamper detection and social network recognition. The performances obtained show on the one hand that this compression must be taken into account as an attack, but that it leads to a more important decrease than other manipulations for an equivalent image degradation. ; Le volume de données visuelles numériques augmente considérablement d'année en années. En parallèle, l’édition d'images est devenue plus facile et plus précise. Les modifications malveillantes sont donc plus accessibles. La criminalistique des images fournit des solutions pour garantir l’authenticité des données visuelles numériques. Tout ...
Druh dokumentu: doctoral or postdoctoral thesis
Jazyk: English
Relation: NNT: 2022SORUS252
Dostupnost: https://theses.hal.science/tel-03859790
https://theses.hal.science/tel-03859790v1/document
https://theses.hal.science/tel-03859790v1/file/BERTHET_Alexandre_these_2022.pdf
Rights: info:eu-repo/semantics/OpenAccess
Přístupové číslo: edsbas.6F1A5BFD
Databáze: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://theses.hal.science/tel-03859790#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Berthet%20A
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.6F1A5BFD
RelevancyScore: 847
AccessLevel: 3
PubType: Dissertation/ Thesis
PubTypeId: dissertation
PreciseRelevancyScore: 847.000732421875
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Deep learning methods and advancements in digital image forensics ; Méthodes et avancement d’apprentissage profond en criminalistique des images
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Berthet%2C+Alexandre%22">Berthet, Alexandre</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Eurecom Sophia Antipolis<br />Sorbonne Université<br />Jean-Luc Dugelay
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>https://theses.hal.science/tel-03859790 ; Computer Aided Engineering. Sorbonne Université, 2022. English. ⟨NNT : 2022SORUS252⟩</i>.
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: CCSD
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2022
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22AI-based+compression%22">AI-based compression</searchLink><br /><searchLink fieldCode="DE" term="%22Camera+recognition%22">Camera recognition</searchLink><br /><searchLink fieldCode="DE" term="%22Digital+image+forensics%22">Digital image forensics</searchLink><br /><searchLink fieldCode="DE" term="%22Contre-Criminalistique%22">Contre-Criminalistique</searchLink><br /><searchLink fieldCode="DE" term="%22Protocoles+d'Évaluation%22">Protocoles d'Évaluation</searchLink><br /><searchLink fieldCode="DE" term="%22Compression+basée+sur+l'Intelligence+Artificielle%22">Compression basée sur l'Intelligence Artificielle</searchLink><br /><searchLink fieldCode="DE" term="%22Reconnaissance+de+Caméras%22">Reconnaissance de Caméras</searchLink><br /><searchLink fieldCode="DE" term="%22Criminalistique+des+Images%22">Criminalistique des Images</searchLink><br /><searchLink fieldCode="DE" term="%22[INFO%2EINFO-IA]Computer+Science+[cs]%2FComputer+Aided+Engineering%22">[INFO.INFO-IA]Computer Science [cs]/Computer Aided Engineering</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: The volume of digital visual data is increasing dramatically year after year. At the same time, image editing has become easier and more precise. Malicious modifications are therefore more accessible. Image forensics provides solutions to ensure the authenticity of digital visual data. Recognition of the source camera and detection of falsified images are among the main tasks. At first, the solutions were classical methods based on the artifacts produced during the creation of a digital image. Then, as in other areas of image processing, the methods moved to deep learning. First, we present a state-of-the-art survey of deep learning methods for image forensics. Our state-of-the-art survey highlights the need to apply pre-processing modules to extract artifacts hidden by image content. We also highlight the problems concerning image recognition evaluation protocols. Furthermore, we address counter-forensics and present compression based on artificial intelligence, which could be considered as an attack. In a second step, this thesis details three progressive evaluation protocols that address camera recognition problems. The final protocol, which is more reliable and reproducible, highlights the impossibility of state-of-the-art methods to recognize cameras in a challenging context. In a third step, we study the impact of compression based on artificial intelligence on two tasks analyzing compression artifacts: tamper detection and social network recognition. The performances obtained show on the one hand that this compression must be taken into account as an attack, but that it leads to a more important decrease than other manipulations for an equivalent image degradation. ; Le volume de données visuelles numériques augmente considérablement d'année en années. En parallèle, l’édition d'images est devenue plus facile et plus précise. Les modifications malveillantes sont donc plus accessibles. La criminalistique des images fournit des solutions pour garantir l’authenticité des données visuelles numériques. Tout ...
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: doctoral or postdoctoral thesis
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: NNT: 2022SORUS252
– Name: URL
  Label: Availability
  Group: URL
  Data: https://theses.hal.science/tel-03859790<br />https://theses.hal.science/tel-03859790v1/document<br />https://theses.hal.science/tel-03859790v1/file/BERTHET_Alexandre_these_2022.pdf
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: info:eu-repo/semantics/OpenAccess
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.6F1A5BFD
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.6F1A5BFD
RecordInfo BibRecord:
  BibEntity:
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: AI-based compression
        Type: general
      – SubjectFull: Camera recognition
        Type: general
      – SubjectFull: Digital image forensics
        Type: general
      – SubjectFull: Contre-Criminalistique
        Type: general
      – SubjectFull: Protocoles d'Évaluation
        Type: general
      – SubjectFull: Compression basée sur l'Intelligence Artificielle
        Type: general
      – SubjectFull: Reconnaissance de Caméras
        Type: general
      – SubjectFull: Criminalistique des Images
        Type: general
      – SubjectFull: [INFO.INFO-IA]Computer Science [cs]/Computer Aided Engineering
        Type: general
    Titles:
      – TitleFull: Deep learning methods and advancements in digital image forensics ; Méthodes et avancement d’apprentissage profond en criminalistique des images
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Berthet, Alexandre
      – PersonEntity:
          Name:
            NameFull: Eurecom Sophia Antipolis
      – PersonEntity:
          Name:
            NameFull: Sorbonne Université
      – PersonEntity:
          Name:
            NameFull: Jean-Luc Dugelay
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2022
          Identifiers:
            – Type: issn-locals
              Value: edsbas
            – Type: issn-locals
              Value: edsbas.oa
          Titles:
            – TitleFull: https://theses.hal.science/tel-03859790 ; Computer Aided Engineering. Sorbonne Université, 2022. English. ⟨NNT : 2022SORUS252⟩
              Type: main
ResultId 1