Regularized Compression of A Noisy Blurred Image
Uloženo v:
| Název: | Regularized Compression of A Noisy Blurred Image |
|---|---|
| Autoři: | Paola Favati, Grazia Lotti, Ornella Menchi, Francesco Romani |
| Informace o vydavateli: | Zenodo |
| Rok vydání: | 2016 |
| Sbírka: | Zenodo |
| Témata: | Image Regularization, Image Compression, Nonnegative Matrix Factorization |
| Popis: | Both regularization and compression are important issues in image processing and have been widely approached in the literature. The usual procedure to obtain the compression of an image given through a noisy blur requires two steps: first a deblurring step of the image and then a factorization step of the regularized image to get an approximation in terms of low rank nonnegative factors. We examine here the possibility of swapping the two steps by deblurring directly the noisy factors or partially denoised factors. The experimentation shows that in this way images with comparable regularized compression can be obtained with a lower computational cost. |
| Druh dokumentu: | article in journal/newspaper |
| Jazyk: | unknown |
| Relation: | https://zenodo.org/records/2869756; oai:zenodo.org:2869756; https://doi.org/10.5281/zenodo.2869756 |
| DOI: | 10.5281/zenodo.2869756 |
| Dostupnost: | https://doi.org/10.5281/zenodo.2869756 https://zenodo.org/records/2869756 |
| Rights: | Creative Commons Attribution 4.0 International ; cc-by-4.0 ; https://creativecommons.org/licenses/by/4.0/legalcode |
| Přístupové číslo: | edsbas.686B6E8E |
| Databáze: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.5281/zenodo.2869756# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Favati%20P Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.686B6E8E RelevancyScore: 863 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 863.477478027344 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Regularized Compression of A Noisy Blurred Image – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Paola+Favati%22">Paola Favati</searchLink><br /><searchLink fieldCode="AR" term="%22Grazia+Lotti%22">Grazia Lotti</searchLink><br /><searchLink fieldCode="AR" term="%22Ornella+Menchi%22">Ornella Menchi</searchLink><br /><searchLink fieldCode="AR" term="%22Francesco+Romani%22">Francesco Romani</searchLink> – Name: Publisher Label: Publisher Information Group: PubInfo Data: Zenodo – Name: DatePubCY Label: Publication Year Group: Date Data: 2016 – Name: Subset Label: Collection Group: HoldingsInfo Data: Zenodo – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Image+Regularization%22">Image Regularization</searchLink><br /><searchLink fieldCode="DE" term="%22Image+Compression%22">Image Compression</searchLink><br /><searchLink fieldCode="DE" term="%22Nonnegative+Matrix+Factorization%22">Nonnegative Matrix Factorization</searchLink> – Name: Abstract Label: Description Group: Ab Data: Both regularization and compression are important issues in image processing and have been widely approached in the literature. The usual procedure to obtain the compression of an image given through a noisy blur requires two steps: first a deblurring step of the image and then a factorization step of the regularized image to get an approximation in terms of low rank nonnegative factors. We examine here the possibility of swapping the two steps by deblurring directly the noisy factors or partially denoised factors. The experimentation shows that in this way images with comparable regularized compression can be obtained with a lower computational cost. – Name: TypeDocument Label: Document Type Group: TypDoc Data: article in journal/newspaper – Name: Language Label: Language Group: Lang Data: unknown – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://zenodo.org/records/2869756; oai:zenodo.org:2869756; https://doi.org/10.5281/zenodo.2869756 – Name: DOI Label: DOI Group: ID Data: 10.5281/zenodo.2869756 – Name: URL Label: Availability Group: URL Data: https://doi.org/10.5281/zenodo.2869756<br />https://zenodo.org/records/2869756 – Name: Copyright Label: Rights Group: Cpyrght Data: Creative Commons Attribution 4.0 International ; cc-by-4.0 ; https://creativecommons.org/licenses/by/4.0/legalcode – Name: AN Label: Accession Number Group: ID Data: edsbas.686B6E8E |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.686B6E8E |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.5281/zenodo.2869756 Languages: – Text: unknown Subjects: – SubjectFull: Image Regularization Type: general – SubjectFull: Image Compression Type: general – SubjectFull: Nonnegative Matrix Factorization Type: general Titles: – TitleFull: Regularized Compression of A Noisy Blurred Image Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Paola Favati – PersonEntity: Name: NameFull: Grazia Lotti – PersonEntity: Name: NameFull: Ornella Menchi – PersonEntity: Name: NameFull: Francesco Romani IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2016 Identifiers: – Type: issn-locals Value: edsbas – Type: issn-locals Value: edsbas.oa |
| ResultId | 1 |
Nájsť tento článok vo Web of Science