Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs
Gespeichert in:
| Titel: | Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs |
|---|---|
| Autoren: | Nobile, Fabio, Tamellini, Lorenzo, Tempone, Raul |
| Verlagsinformationen: | Springer |
| Publikationsjahr: | 2014 |
| Bestand: | Ecole Polytechnique Fédérale Lausanne (EPFL): Infoscience |
| Schlagwörter: | Uncertainty Quantification, random PDEs, linear elliptic equations, multivariate polynomial approximation, best M-terms polynomial approximation, Smolyak approximation, Sparse grids, Stochastic Collocation method |
| Beschreibung: | In this work we provide a convergence analysis for the quasi-optimal version of the sparse-grids stochastic collocation method we presented in a previous work: “On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods” (Beck et al., Math Models Methods Appl Sci 22(09), 2012). The construction of a sparse grid is recast into a knapsack problem: a profit is assigned to each hierarchical surplus and only the most profitable ones are added to the sparse grid. The convergence rate of the sparse grid approximation error with respect to the number of points in the grid is then shown to depend on weighted summability properties of the sequence of profits. This is a very general argument that can be applied to sparse grids built with any uni-variate family of points, both nested and non-nested. As an example, we apply such quasi-optimal sparse grids to the solution of a particular elliptic PDE with stochastic diffusion coefficients, namely the “inclusions problem”: we detail the convergence estimates obtained in this case using polynomial interpolation on either nested (Clenshaw-Curtis) or non-nested (Gauss-Legendre) abscissas, verify their sharpness numerically, and compare the performance of the resulting quasi-optimal grids with a few alternative sparse-grid construction schemes recently proposed in the literature. ; CSQI |
| Publikationsart: | article in journal/newspaper |
| Sprache: | unknown |
| ISSN: | 0029-599X 0945-3245 |
| Relation: | https://infoscience.epfl.ch/record/196966/files/2016_Nobile_Tamellini_Tempone_NM_Convergence.pdf; Numerische Mathematik; #PLACEHOLDER_PARENT_METADATA_VALUE#; https://infoscience.epfl.ch/handle/20.500.14299/100963; WOS:000382146600005 |
| DOI: | 10.1007/s00211-015-0773-y |
| Verfügbarkeit: | https://doi.org/10.1007/s00211-015-0773-y https://infoscience.epfl.ch/handle/20.500.14299/100963 https://hdl.handle.net/20.500.14299/100963 |
| Dokumentencode: | edsbas.5FEE5760 |
| Datenbank: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.1007/s00211-015-0773-y# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsbas&genre=article&issn=0029599X&ISBN=&volume=&issue=&date=20140101&spage=&pages=&title=Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs&atitle=Convergence%20of%20quasi-optimal%20sparse-grid%20approximation%20of%20Hilbert-space-valued%20functions%3A%20application%20to%20random%20elliptic%20PDEs&aulast=Nobile%2C%20Fabio&id=DOI:10.1007/s00211-015-0773-y Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Nobile%20F Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.5FEE5760 RelevancyScore: 778 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 778.219055175781 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Nobile%2C+Fabio%22">Nobile, Fabio</searchLink><br /><searchLink fieldCode="AR" term="%22Tamellini%2C+Lorenzo%22">Tamellini, Lorenzo</searchLink><br /><searchLink fieldCode="AR" term="%22Tempone%2C+Raul%22">Tempone, Raul</searchLink> – Name: Publisher Label: Publisher Information Group: PubInfo Data: Springer – Name: DatePubCY Label: Publication Year Group: Date Data: 2014 – Name: Subset Label: Collection Group: HoldingsInfo Data: Ecole Polytechnique Fédérale Lausanne (EPFL): Infoscience – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Uncertainty+Quantification%22">Uncertainty Quantification</searchLink><br /><searchLink fieldCode="DE" term="%22random+PDEs%22">random PDEs</searchLink><br /><searchLink fieldCode="DE" term="%22linear+elliptic+equations%22">linear elliptic equations</searchLink><br /><searchLink fieldCode="DE" term="%22multivariate+polynomial+approximation%22">multivariate polynomial approximation</searchLink><br /><searchLink fieldCode="DE" term="%22best+M-terms+polynomial+approximation%22">best M-terms polynomial approximation</searchLink><br /><searchLink fieldCode="DE" term="%22Smolyak+approximation%22">Smolyak approximation</searchLink><br /><searchLink fieldCode="DE" term="%22Sparse+grids%22">Sparse grids</searchLink><br /><searchLink fieldCode="DE" term="%22Stochastic+Collocation+method%22">Stochastic Collocation method</searchLink> – Name: Abstract Label: Description Group: Ab Data: In this work we provide a convergence analysis for the quasi-optimal version of the sparse-grids stochastic collocation method we presented in a previous work: “On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods” (Beck et al., Math Models Methods Appl Sci 22(09), 2012). The construction of a sparse grid is recast into a knapsack problem: a profit is assigned to each hierarchical surplus and only the most profitable ones are added to the sparse grid. The convergence rate of the sparse grid approximation error with respect to the number of points in the grid is then shown to depend on weighted summability properties of the sequence of profits. This is a very general argument that can be applied to sparse grids built with any uni-variate family of points, both nested and non-nested. As an example, we apply such quasi-optimal sparse grids to the solution of a particular elliptic PDE with stochastic diffusion coefficients, namely the “inclusions problem”: we detail the convergence estimates obtained in this case using polynomial interpolation on either nested (Clenshaw-Curtis) or non-nested (Gauss-Legendre) abscissas, verify their sharpness numerically, and compare the performance of the resulting quasi-optimal grids with a few alternative sparse-grid construction schemes recently proposed in the literature. ; CSQI – Name: TypeDocument Label: Document Type Group: TypDoc Data: article in journal/newspaper – Name: Language Label: Language Group: Lang Data: unknown – Name: ISSN Label: ISSN Group: ISSN Data: 0029-599X<br />0945-3245 – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://infoscience.epfl.ch/record/196966/files/2016_Nobile_Tamellini_Tempone_NM_Convergence.pdf; Numerische Mathematik; #PLACEHOLDER_PARENT_METADATA_VALUE#; https://infoscience.epfl.ch/handle/20.500.14299/100963; WOS:000382146600005 – Name: DOI Label: DOI Group: ID Data: 10.1007/s00211-015-0773-y – Name: URL Label: Availability Group: URL Data: https://doi.org/10.1007/s00211-015-0773-y<br />https://infoscience.epfl.ch/handle/20.500.14299/100963<br />https://hdl.handle.net/20.500.14299/100963 – Name: AN Label: Accession Number Group: ID Data: edsbas.5FEE5760 |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.5FEE5760 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1007/s00211-015-0773-y Languages: – Text: unknown Subjects: – SubjectFull: Uncertainty Quantification Type: general – SubjectFull: random PDEs Type: general – SubjectFull: linear elliptic equations Type: general – SubjectFull: multivariate polynomial approximation Type: general – SubjectFull: best M-terms polynomial approximation Type: general – SubjectFull: Smolyak approximation Type: general – SubjectFull: Sparse grids Type: general – SubjectFull: Stochastic Collocation method Type: general Titles: – TitleFull: Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Nobile, Fabio – PersonEntity: Name: NameFull: Tamellini, Lorenzo – PersonEntity: Name: NameFull: Tempone, Raul IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2014 Identifiers: – Type: issn-print Value: 0029599X – Type: issn-print Value: 09453245 – Type: issn-locals Value: edsbas |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science