Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs

Gespeichert in:
Bibliographische Detailangaben
Titel: Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs
Autoren: Nobile, Fabio, Tamellini, Lorenzo, Tempone, Raul
Verlagsinformationen: Springer
Publikationsjahr: 2014
Bestand: Ecole Polytechnique Fédérale Lausanne (EPFL): Infoscience
Schlagwörter: Uncertainty Quantification, random PDEs, linear elliptic equations, multivariate polynomial approximation, best M-terms polynomial approximation, Smolyak approximation, Sparse grids, Stochastic Collocation method
Beschreibung: In this work we provide a convergence analysis for the quasi-optimal version of the sparse-grids stochastic collocation method we presented in a previous work: “On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods” (Beck et al., Math Models Methods Appl Sci 22(09), 2012). The construction of a sparse grid is recast into a knapsack problem: a profit is assigned to each hierarchical surplus and only the most profitable ones are added to the sparse grid. The convergence rate of the sparse grid approximation error with respect to the number of points in the grid is then shown to depend on weighted summability properties of the sequence of profits. This is a very general argument that can be applied to sparse grids built with any uni-variate family of points, both nested and non-nested. As an example, we apply such quasi-optimal sparse grids to the solution of a particular elliptic PDE with stochastic diffusion coefficients, namely the “inclusions problem”: we detail the convergence estimates obtained in this case using polynomial interpolation on either nested (Clenshaw-Curtis) or non-nested (Gauss-Legendre) abscissas, verify their sharpness numerically, and compare the performance of the resulting quasi-optimal grids with a few alternative sparse-grid construction schemes recently proposed in the literature. ; CSQI
Publikationsart: article in journal/newspaper
Sprache: unknown
ISSN: 0029-599X
0945-3245
Relation: https://infoscience.epfl.ch/record/196966/files/2016_Nobile_Tamellini_Tempone_NM_Convergence.pdf; Numerische Mathematik; #PLACEHOLDER_PARENT_METADATA_VALUE#; https://infoscience.epfl.ch/handle/20.500.14299/100963; WOS:000382146600005
DOI: 10.1007/s00211-015-0773-y
Verfügbarkeit: https://doi.org/10.1007/s00211-015-0773-y
https://infoscience.epfl.ch/handle/20.500.14299/100963
https://hdl.handle.net/20.500.14299/100963
Dokumentencode: edsbas.5FEE5760
Datenbank: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.1007/s00211-015-0773-y#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsbas&genre=article&issn=0029599X&ISBN=&volume=&issue=&date=20140101&spage=&pages=&title=Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs&atitle=Convergence%20of%20quasi-optimal%20sparse-grid%20approximation%20of%20Hilbert-space-valued%20functions%3A%20application%20to%20random%20elliptic%20PDEs&aulast=Nobile%2C%20Fabio&id=DOI:10.1007/s00211-015-0773-y
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Nobile%20F
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.5FEE5760
RelevancyScore: 778
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 778.219055175781
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Nobile%2C+Fabio%22">Nobile, Fabio</searchLink><br /><searchLink fieldCode="AR" term="%22Tamellini%2C+Lorenzo%22">Tamellini, Lorenzo</searchLink><br /><searchLink fieldCode="AR" term="%22Tempone%2C+Raul%22">Tempone, Raul</searchLink>
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Springer
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2014
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Ecole Polytechnique Fédérale Lausanne (EPFL): Infoscience
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Uncertainty+Quantification%22">Uncertainty Quantification</searchLink><br /><searchLink fieldCode="DE" term="%22random+PDEs%22">random PDEs</searchLink><br /><searchLink fieldCode="DE" term="%22linear+elliptic+equations%22">linear elliptic equations</searchLink><br /><searchLink fieldCode="DE" term="%22multivariate+polynomial+approximation%22">multivariate polynomial approximation</searchLink><br /><searchLink fieldCode="DE" term="%22best+M-terms+polynomial+approximation%22">best M-terms polynomial approximation</searchLink><br /><searchLink fieldCode="DE" term="%22Smolyak+approximation%22">Smolyak approximation</searchLink><br /><searchLink fieldCode="DE" term="%22Sparse+grids%22">Sparse grids</searchLink><br /><searchLink fieldCode="DE" term="%22Stochastic+Collocation+method%22">Stochastic Collocation method</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: In this work we provide a convergence analysis for the quasi-optimal version of the sparse-grids stochastic collocation method we presented in a previous work: “On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods” (Beck et al., Math Models Methods Appl Sci 22(09), 2012). The construction of a sparse grid is recast into a knapsack problem: a profit is assigned to each hierarchical surplus and only the most profitable ones are added to the sparse grid. The convergence rate of the sparse grid approximation error with respect to the number of points in the grid is then shown to depend on weighted summability properties of the sequence of profits. This is a very general argument that can be applied to sparse grids built with any uni-variate family of points, both nested and non-nested. As an example, we apply such quasi-optimal sparse grids to the solution of a particular elliptic PDE with stochastic diffusion coefficients, namely the “inclusions problem”: we detail the convergence estimates obtained in this case using polynomial interpolation on either nested (Clenshaw-Curtis) or non-nested (Gauss-Legendre) abscissas, verify their sharpness numerically, and compare the performance of the resulting quasi-optimal grids with a few alternative sparse-grid construction schemes recently proposed in the literature. ; CSQI
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article in journal/newspaper
– Name: Language
  Label: Language
  Group: Lang
  Data: unknown
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 0029-599X<br />0945-3245
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://infoscience.epfl.ch/record/196966/files/2016_Nobile_Tamellini_Tempone_NM_Convergence.pdf; Numerische Mathematik; #PLACEHOLDER_PARENT_METADATA_VALUE#; https://infoscience.epfl.ch/handle/20.500.14299/100963; WOS:000382146600005
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1007/s00211-015-0773-y
– Name: URL
  Label: Availability
  Group: URL
  Data: https://doi.org/10.1007/s00211-015-0773-y<br />https://infoscience.epfl.ch/handle/20.500.14299/100963<br />https://hdl.handle.net/20.500.14299/100963
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.5FEE5760
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.5FEE5760
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1007/s00211-015-0773-y
    Languages:
      – Text: unknown
    Subjects:
      – SubjectFull: Uncertainty Quantification
        Type: general
      – SubjectFull: random PDEs
        Type: general
      – SubjectFull: linear elliptic equations
        Type: general
      – SubjectFull: multivariate polynomial approximation
        Type: general
      – SubjectFull: best M-terms polynomial approximation
        Type: general
      – SubjectFull: Smolyak approximation
        Type: general
      – SubjectFull: Sparse grids
        Type: general
      – SubjectFull: Stochastic Collocation method
        Type: general
    Titles:
      – TitleFull: Convergence of quasi-optimal sparse-grid approximation of Hilbert-space-valued functions: application to random elliptic PDEs
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Nobile, Fabio
      – PersonEntity:
          Name:
            NameFull: Tamellini, Lorenzo
      – PersonEntity:
          Name:
            NameFull: Tempone, Raul
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2014
          Identifiers:
            – Type: issn-print
              Value: 0029599X
            – Type: issn-print
              Value: 09453245
            – Type: issn-locals
              Value: edsbas
ResultId 1