Encoder–Decoder Variant Analysis for Semantic Segmentation of Gastrointestinal Tract Using UW-Madison Dataset
Gespeichert in:
| Titel: | Encoder–Decoder Variant Analysis for Semantic Segmentation of Gastrointestinal Tract Using UW-Madison Dataset |
|---|---|
| Autoren: | Neha Sharma, Sheifali Gupta, Dalia H. Elkamchouchi, Salil Bharany |
| Quelle: | Bioengineering ; Volume 12 ; Issue 3 ; Pages: 309 |
| Verlagsinformationen: | Multidisciplinary Digital Publishing Institute |
| Publikationsjahr: | 2025 |
| Bestand: | MDPI Open Access Publishing |
| Schlagwörter: | UW-Madison GI dataset, gastrointestinal tract, segmentation, cancer, encoders, ResNet 50, decoders, DeepLab V3+ |
| Geographisches Schlagwort: | agris |
| Beschreibung: | The gastrointestinal (GI) tract, an integral part of the digestive system, absorbs nutrients from ingested food, starting from the mouth to the anus. GI tract cancer significantly impacts global health, necessitating precise treatment methods. Radiation oncologists use X-ray beams to target tumors while avoiding the stomach and intestines, making the accurate segmentation of these organs crucial. This research explores various combinations of encoders and decoders to segment the small bowel, large bowel, and stomach in MRI images, using the UW-Madison GI tract dataset consisting of 38,496 scans. Encoders tested include ResNet50, EfficientNetB1, MobileNetV2, ResNext50, and Timm_Gernet_S, paired with decoders UNet, FPN, PSPNet, PAN, and DeepLab V3+. The study identifies ResNet50 with DeepLab V3+ as the most effective combination, assessed using the Dice coefficient, Jaccard index, and model loss. The proposed model, a combination of DeepLab V3+ and ResNet 50, obtained a Dice value of 0.9082, an IoU value of 0.8796, and a model loss of 0.117. The findings demonstrate the method’s potential to improve radiation therapy for GI cancer, aiding radiation oncologists in accurately targeting tumors while avoiding healthy organs. The results of this study will assist healthcare professionals involved in biomedical image analysis. |
| Publikationsart: | text |
| Dateibeschreibung: | application/pdf |
| Sprache: | English |
| Relation: | Biosignal Processing; https://dx.doi.org/10.3390/bioengineering12030309 |
| DOI: | 10.3390/bioengineering12030309 |
| Verfügbarkeit: | https://doi.org/10.3390/bioengineering12030309 |
| Rights: | https://creativecommons.org/licenses/by/4.0/ |
| Dokumentencode: | edsbas.5BE3AD84 |
| Datenbank: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.3390/bioengineering12030309# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Sharma%20N Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.5BE3AD84 RelevancyScore: 1009 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1009.3056640625 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Encoder–Decoder Variant Analysis for Semantic Segmentation of Gastrointestinal Tract Using UW-Madison Dataset – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Neha+Sharma%22">Neha Sharma</searchLink><br /><searchLink fieldCode="AR" term="%22Sheifali+Gupta%22">Sheifali Gupta</searchLink><br /><searchLink fieldCode="AR" term="%22Dalia+H%2E+Elkamchouchi%22">Dalia H. Elkamchouchi</searchLink><br /><searchLink fieldCode="AR" term="%22Salil+Bharany%22">Salil Bharany</searchLink> – Name: TitleSource Label: Source Group: Src Data: Bioengineering ; Volume 12 ; Issue 3 ; Pages: 309 – Name: Publisher Label: Publisher Information Group: PubInfo Data: Multidisciplinary Digital Publishing Institute – Name: DatePubCY Label: Publication Year Group: Date Data: 2025 – Name: Subset Label: Collection Group: HoldingsInfo Data: MDPI Open Access Publishing – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22UW-Madison+GI+dataset%22">UW-Madison GI dataset</searchLink><br /><searchLink fieldCode="DE" term="%22gastrointestinal+tract%22">gastrointestinal tract</searchLink><br /><searchLink fieldCode="DE" term="%22segmentation%22">segmentation</searchLink><br /><searchLink fieldCode="DE" term="%22cancer%22">cancer</searchLink><br /><searchLink fieldCode="DE" term="%22encoders%22">encoders</searchLink><br /><searchLink fieldCode="DE" term="%22ResNet+50%22">ResNet 50</searchLink><br /><searchLink fieldCode="DE" term="%22decoders%22">decoders</searchLink><br /><searchLink fieldCode="DE" term="%22DeepLab+V3%2B%22">DeepLab V3+</searchLink> – Name: Subject Label: Subject Geographic Group: Su Data: <searchLink fieldCode="DE" term="%22agris%22">agris</searchLink> – Name: Abstract Label: Description Group: Ab Data: The gastrointestinal (GI) tract, an integral part of the digestive system, absorbs nutrients from ingested food, starting from the mouth to the anus. GI tract cancer significantly impacts global health, necessitating precise treatment methods. Radiation oncologists use X-ray beams to target tumors while avoiding the stomach and intestines, making the accurate segmentation of these organs crucial. This research explores various combinations of encoders and decoders to segment the small bowel, large bowel, and stomach in MRI images, using the UW-Madison GI tract dataset consisting of 38,496 scans. Encoders tested include ResNet50, EfficientNetB1, MobileNetV2, ResNext50, and Timm_Gernet_S, paired with decoders UNet, FPN, PSPNet, PAN, and DeepLab V3+. The study identifies ResNet50 with DeepLab V3+ as the most effective combination, assessed using the Dice coefficient, Jaccard index, and model loss. The proposed model, a combination of DeepLab V3+ and ResNet 50, obtained a Dice value of 0.9082, an IoU value of 0.8796, and a model loss of 0.117. The findings demonstrate the method’s potential to improve radiation therapy for GI cancer, aiding radiation oncologists in accurately targeting tumors while avoiding healthy organs. The results of this study will assist healthcare professionals involved in biomedical image analysis. – Name: TypeDocument Label: Document Type Group: TypDoc Data: text – Name: Format Label: File Description Group: SrcInfo Data: application/pdf – Name: Language Label: Language Group: Lang Data: English – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: Biosignal Processing; https://dx.doi.org/10.3390/bioengineering12030309 – Name: DOI Label: DOI Group: ID Data: 10.3390/bioengineering12030309 – Name: URL Label: Availability Group: URL Data: https://doi.org/10.3390/bioengineering12030309 – Name: Copyright Label: Rights Group: Cpyrght Data: https://creativecommons.org/licenses/by/4.0/ – Name: AN Label: Accession Number Group: ID Data: edsbas.5BE3AD84 |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.5BE3AD84 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.3390/bioengineering12030309 Languages: – Text: English Subjects: – SubjectFull: agris Type: general – SubjectFull: UW-Madison GI dataset Type: general – SubjectFull: gastrointestinal tract Type: general – SubjectFull: segmentation Type: general – SubjectFull: cancer Type: general – SubjectFull: encoders Type: general – SubjectFull: ResNet 50 Type: general – SubjectFull: decoders Type: general – SubjectFull: DeepLab V3+ Type: general Titles: – TitleFull: Encoder–Decoder Variant Analysis for Semantic Segmentation of Gastrointestinal Tract Using UW-Madison Dataset Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Neha Sharma – PersonEntity: Name: NameFull: Sheifali Gupta – PersonEntity: Name: NameFull: Dalia H. Elkamchouchi – PersonEntity: Name: NameFull: Salil Bharany IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-locals Value: edsbas – Type: issn-locals Value: edsbas.oa Titles: – TitleFull: Bioengineering ; Volume 12 ; Issue 3 ; Pages: 309 Type: main |
| ResultId | 1 |
Nájsť tento článok vo Web of Science