Encoder–Decoder Variant Analysis for Semantic Segmentation of Gastrointestinal Tract Using UW-Madison Dataset

Gespeichert in:
Bibliographische Detailangaben
Titel: Encoder–Decoder Variant Analysis for Semantic Segmentation of Gastrointestinal Tract Using UW-Madison Dataset
Autoren: Neha Sharma, Sheifali Gupta, Dalia H. Elkamchouchi, Salil Bharany
Quelle: Bioengineering ; Volume 12 ; Issue 3 ; Pages: 309
Verlagsinformationen: Multidisciplinary Digital Publishing Institute
Publikationsjahr: 2025
Bestand: MDPI Open Access Publishing
Schlagwörter: UW-Madison GI dataset, gastrointestinal tract, segmentation, cancer, encoders, ResNet 50, decoders, DeepLab V3+
Geographisches Schlagwort: agris
Beschreibung: The gastrointestinal (GI) tract, an integral part of the digestive system, absorbs nutrients from ingested food, starting from the mouth to the anus. GI tract cancer significantly impacts global health, necessitating precise treatment methods. Radiation oncologists use X-ray beams to target tumors while avoiding the stomach and intestines, making the accurate segmentation of these organs crucial. This research explores various combinations of encoders and decoders to segment the small bowel, large bowel, and stomach in MRI images, using the UW-Madison GI tract dataset consisting of 38,496 scans. Encoders tested include ResNet50, EfficientNetB1, MobileNetV2, ResNext50, and Timm_Gernet_S, paired with decoders UNet, FPN, PSPNet, PAN, and DeepLab V3+. The study identifies ResNet50 with DeepLab V3+ as the most effective combination, assessed using the Dice coefficient, Jaccard index, and model loss. The proposed model, a combination of DeepLab V3+ and ResNet 50, obtained a Dice value of 0.9082, an IoU value of 0.8796, and a model loss of 0.117. The findings demonstrate the method’s potential to improve radiation therapy for GI cancer, aiding radiation oncologists in accurately targeting tumors while avoiding healthy organs. The results of this study will assist healthcare professionals involved in biomedical image analysis.
Publikationsart: text
Dateibeschreibung: application/pdf
Sprache: English
Relation: Biosignal Processing; https://dx.doi.org/10.3390/bioengineering12030309
DOI: 10.3390/bioengineering12030309
Verfügbarkeit: https://doi.org/10.3390/bioengineering12030309
Rights: https://creativecommons.org/licenses/by/4.0/
Dokumentencode: edsbas.5BE3AD84
Datenbank: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.3390/bioengineering12030309#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Sharma%20N
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.5BE3AD84
RelevancyScore: 1009
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1009.3056640625
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Encoder–Decoder Variant Analysis for Semantic Segmentation of Gastrointestinal Tract Using UW-Madison Dataset
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Neha+Sharma%22">Neha Sharma</searchLink><br /><searchLink fieldCode="AR" term="%22Sheifali+Gupta%22">Sheifali Gupta</searchLink><br /><searchLink fieldCode="AR" term="%22Dalia+H%2E+Elkamchouchi%22">Dalia H. Elkamchouchi</searchLink><br /><searchLink fieldCode="AR" term="%22Salil+Bharany%22">Salil Bharany</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Bioengineering ; Volume 12 ; Issue 3 ; Pages: 309
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Multidisciplinary Digital Publishing Institute
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2025
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: MDPI Open Access Publishing
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22UW-Madison+GI+dataset%22">UW-Madison GI dataset</searchLink><br /><searchLink fieldCode="DE" term="%22gastrointestinal+tract%22">gastrointestinal tract</searchLink><br /><searchLink fieldCode="DE" term="%22segmentation%22">segmentation</searchLink><br /><searchLink fieldCode="DE" term="%22cancer%22">cancer</searchLink><br /><searchLink fieldCode="DE" term="%22encoders%22">encoders</searchLink><br /><searchLink fieldCode="DE" term="%22ResNet+50%22">ResNet 50</searchLink><br /><searchLink fieldCode="DE" term="%22decoders%22">decoders</searchLink><br /><searchLink fieldCode="DE" term="%22DeepLab+V3%2B%22">DeepLab V3+</searchLink>
– Name: Subject
  Label: Subject Geographic
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22agris%22">agris</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: The gastrointestinal (GI) tract, an integral part of the digestive system, absorbs nutrients from ingested food, starting from the mouth to the anus. GI tract cancer significantly impacts global health, necessitating precise treatment methods. Radiation oncologists use X-ray beams to target tumors while avoiding the stomach and intestines, making the accurate segmentation of these organs crucial. This research explores various combinations of encoders and decoders to segment the small bowel, large bowel, and stomach in MRI images, using the UW-Madison GI tract dataset consisting of 38,496 scans. Encoders tested include ResNet50, EfficientNetB1, MobileNetV2, ResNext50, and Timm_Gernet_S, paired with decoders UNet, FPN, PSPNet, PAN, and DeepLab V3+. The study identifies ResNet50 with DeepLab V3+ as the most effective combination, assessed using the Dice coefficient, Jaccard index, and model loss. The proposed model, a combination of DeepLab V3+ and ResNet 50, obtained a Dice value of 0.9082, an IoU value of 0.8796, and a model loss of 0.117. The findings demonstrate the method’s potential to improve radiation therapy for GI cancer, aiding radiation oncologists in accurately targeting tumors while avoiding healthy organs. The results of this study will assist healthcare professionals involved in biomedical image analysis.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: text
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: application/pdf
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: Biosignal Processing; https://dx.doi.org/10.3390/bioengineering12030309
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.3390/bioengineering12030309
– Name: URL
  Label: Availability
  Group: URL
  Data: https://doi.org/10.3390/bioengineering12030309
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: https://creativecommons.org/licenses/by/4.0/
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.5BE3AD84
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.5BE3AD84
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.3390/bioengineering12030309
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: agris
        Type: general
      – SubjectFull: UW-Madison GI dataset
        Type: general
      – SubjectFull: gastrointestinal tract
        Type: general
      – SubjectFull: segmentation
        Type: general
      – SubjectFull: cancer
        Type: general
      – SubjectFull: encoders
        Type: general
      – SubjectFull: ResNet 50
        Type: general
      – SubjectFull: decoders
        Type: general
      – SubjectFull: DeepLab V3+
        Type: general
    Titles:
      – TitleFull: Encoder–Decoder Variant Analysis for Semantic Segmentation of Gastrointestinal Tract Using UW-Madison Dataset
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Neha Sharma
      – PersonEntity:
          Name:
            NameFull: Sheifali Gupta
      – PersonEntity:
          Name:
            NameFull: Dalia H. Elkamchouchi
      – PersonEntity:
          Name:
            NameFull: Salil Bharany
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-locals
              Value: edsbas
            – Type: issn-locals
              Value: edsbas.oa
          Titles:
            – TitleFull: Bioengineering ; Volume 12 ; Issue 3 ; Pages: 309
              Type: main
ResultId 1