Clinical significance of determining neutrophil extracellular traps in women with oncogynecological neoplasms ; Клиническое значение определения внеклеточных ловушек нейтрофилов у женщин с онкогинекологическими заболеваниями
Saved in:
| Title: | Clinical significance of determining neutrophil extracellular traps in women with oncogynecological neoplasms ; Клиническое значение определения внеклеточных ловушек нейтрофилов у женщин с онкогинекологическими заболеваниями |
|---|---|
| Authors: | Z. D. Aslanova, J. Kh. Khizroeva, A. G. Solopova, V. A. Solodkiy, A. V. Vorobev, D. V. Blinov, M. D. Aslanova, I. A. Nakaidze, J.-C. Gris, I. Elalamy, A. D. Makatsariya, З. Д. Асланова, Д. Х. Хизроева, А. Г. Солопова, В. А. Солодкий, А. В. Воробьев, Д. В. Блинов, М. Д. Асланова, И. А. Накаидзе, Ж.-К. Гри, И. Элалами, А. Д. Макацария |
| Source: | Obstetrics, Gynecology and Reproduction; Vol 17, No 6 (2023); 751-768 ; Акушерство, Гинекология и Репродукция; Vol 17, No 6 (2023); 751-768 ; 2500-3194 ; 2313-7347 |
| Publisher Information: | IRBIS LLC |
| Publication Year: | 2024 |
| Collection: | Obstetrics, Gynecology and Reproduction (AGR - E-Journal) / Акушерство, Гинекология и Репродукция (АГР) |
| Subject Terms: | онкологические заболевания, NETs, NETosis, myeloperoxidase, citrullinated histone H3, cancer, oncological diseases, нетоз, миелопероксидаза, цитруллинированный гистон H3, рак |
| Description: | The formation of neutrophil extracellular traps (NETs), described first in 2004 as a previously unknown neutrophil strategy for combating microbes, has been attracting a growing interest in research community. NETs play a key role in inflammation and infection exploiting effector functions such as degranulation, phagocytosis as well as production of reactive oxygen species (ROS). NETs play a crucial role in defense against systemic infections. Additionally NETs involved in inflammation, and in the pathogenesis of non-infectious diseases, such as autoimmune diseases and cancer. ; Образование внеклеточных ловушек нейтрофилов (англ. neutrophil extracellular traps, NETs), впервые описанное в 2004 г. как ранее неизвестная стратегия нейтрофилов для борьбы с микробами, привлекает растущий интерес в исследовательском сообществе. NETs выполняют ключевую роль в воспалении и инфекции, где они используют такие эффекторные функции, как дегрануляция, фагоцитоз, образование активных форм кислорода (англ. reactive oxygen species, ROS). NETs играют решающую роль в реализации защитно-приспособительных процессов, таких как воспаление, и патогенезе неинфекционных заболеваний, таких как аутоиммунные заболевания и рак. |
| Document Type: | article in journal/newspaper |
| File Description: | application/pdf |
| Language: | Russian |
| Relation: | https://www.gynecology.su/jour/article/view/1856/1162; Beiter T., Fragasso A., HartlD., Nieß A.M. Neutrophil extracellular traps: a walk on the wild side of exercise immunology. Sports Med. 2015;45(5):625–40. https://doi.org/10.1007/s40279-014-0296-1.; Finazzi G. The Italian Registry of antiphospholipid antibodies. Haematologica. 1997;82(1):101–5.; Saffarzadeh M., Juenemann C., Queisser M.A. et al. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PloS One. 2012;7(2):e32366. https://doi.org/10.1371/journal.pone.0032366.; Fine N., Tasevski N., McCulloch C.A. et al. The neutrophil: constant defender and first responder. Front Immunol. 2020;11:571085. https://doi.org/10.3389/fimmu.2020.571085.; Vilen S.-T., Nyberg P., Hukkanen M. et al. Intracellular co-localization of trypsin-2 and matrix metalloprotease-9: possible proteolytic cascade of trypsin-2, MMP-9 and enterokinase in carcinoma. Exp Cell Res. 2008;314(4):914–26. https://doi.org/10.1016/j.yexcr.2007.10.025.; Антонеева И.И. Кислородзависимая антимикробная система нейтрофилов в динамике развития рака яичников. Казанский медицинский журнал. 2008;89(4):476–8.; Schauer C., Janko C., Munoz L.E. et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med. 2014;20(5):511–7. https://doi.org/10.1038/nm.3547.; Shi X., Li B., Yuan Y. et al. The possible association between the presence of an MPO -463 G > A (rs2333227) polymorphism and cervical cancer risk. Pathol Res Pract. 2018;8(214):1142–8. https://doi.org/10.1016/j.prp.2018.05.018.; Falanga A., Rickles F.R. Pathophysiology of the thrombophilic state in the cancer patient. Semin Thromb Hemost. 1999;25(2):173–82. https://doi.org/10.1016/10.1055/s-2007-994919.; Fine N., Tasevski N., McCulloch C.A. et al. The neutrophil: constant defender and first responder. Front Immunol. 2020;11:571085. https://doi.org/10.1016/10.3389/fimmu.2020.571085.; Brinkmann V., Reichard U., Goosmann C. et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532–5. https://doi.org/10.1126/science.1092385.; Arazna M., Pruchniak M.P., Zycinska K., Demkow U. Neutrophil extracellular trap in human diseases. Adv Exp Med Biol. 2013;756:1–8. https://doi.org/10.1007/978-94-007-4549-0_1.; Yalavarthi S., Gould T.J., Rao A.N. et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015;67(11):2990–3003. https://doi.org/10.1002/art.39247.; Demers M., Wagner D.D. NETosis: a new factor in tumor progression and cancer-associated thrombosis. Semin Thromb Hemost. 2014;40(3):277–83. https://doi.org/10.1055/s-0034-1370765.; Malcolm K.C., Worthen G.S. Lipopolysaccharide stimulates p38-dependent induction of antiviral genes in neutrophils independently of paracrine factors. J Biol Chem. 2003;278(18):15693–701. https://doi.org/10.1074/jbc.M212033200.; Perobelli S.M., Galvani R.G., Gonçalves-Silva T. et al. Plasticity of neutrophils reveals modulatory capacity. Braz J Med Biol Res. 2015;48(8):665–75. https://doi.org/10.1590/1414-431X20154524.; Yazdani H.O., Roy E., Comerci A.J. et al. Neutrophil extracellular traps drive mitochondrial homeostasis in tumors to augment growth. Cancer Res. 2019;79(21):5626–39. https://doi.org/10.1158/0008-5472.CAN-19-0800.; Yousefi S., Gold J., Andina N. et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med. 2008;14(9): 949–53. https://doi.org/10.1038/nm.1855.; Coussens L.M., Tinkle C.L., Hanahan D., Werb Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell. 2000;103(3):481–90. https://doi.org/10.1016/s0092-8674(00)00139-2.; Mayadas T.N., Cullere X., Lowell C.A. The multifaceted functions of neutrophils. Annu Rev Pathol. 2014;9:181–218. https://doi.org/10.1146/annurev-pathol-020712-164023.; Al-Benna S., Shai Y., Jacobsen F., Steinstraesser L. Oncolytic activities of host defense peptides. Int J Mol Sci. 2011;12(11):8027–51. https://doi.org/10.3390/ijms12118027.; Cristinziano L., Luca Modestino L., Loffredo S. et al. Anaplastic thyroid cancer cells induce the release of mitochondrial extracellular DNA traps by viable neutrophils. J Immunol. 2020;204(5):1362–72. https://doi.org/10.4049/jimmunol.1900543.; Gupta A.K., Joshi M.B., Philippova M. et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett. 2010;584(14):3193–7. https://doi.org/10.1016/j.febslet.2010.06.006.; Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.; Cools-Lartigue J., Spicer J., McDonald B. et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest. 2013;123(8):3446–58. https://doi.org/10.1172/JCI67484.; Demers M., Krause D.S., Schatzberg D. et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A. 2012;109(32):13076–81. https://doi.org/10.1073/pnas.1200419109.; Hoffmann J.H.O., Enk A.H. Neutrophil extracellular traps in dermatology: caught in the NET. J Dermatol Sci. 2016;84(1):3–10. https://doi.org/10.1016/j.jdermsci.2016.07.001.; Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol. 2018;9:113. https://doi.org/10.3389/fphys.2018.00113.; Kim J., Bae J.-S. Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators Inflamm. 2016;2016:6058147. https://doi.org/10.1155/2016/6058147.; Rayes R.F. Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects. JCI Insight. 2019;5(16):e128008. https://doi.org/10.1172/jci.insight.128008.; Горудко И.В., Черкалина О.С., Соколов А.В. и др. Новые подходы к определению концентрации и пероксидазной активности миелопероксидазы в плазме крови человека. Биоорганическая химия. 2009;35(5):629–39.; Bromberg M.E., Capello M. Cancer and blood coagulation: molecular aspects. Cancer J Sci Am. 1999;5(3):132–8.; Loreto M.F., De Martinis M., Corsi M.P. et al. Coagulation and cancer: implications for diagnosis and management. Pathol Oncol Res. 2000;6(4):301–12. https://doi.org/10.1007/BF03187336.; Panagopoulos V., Leach D.A., Zinonos I. et al. Inflammatory peroxidases promote breast cancer progression in mice via regulation of the tumour microenvironment. Int J Oncol. 2017;50(4):1191–200. https://doi.org/10.3892/ijo.2017.3883.; Андрюков Б.Г., Сомова Л.М., Дробот Е.И., Матосова Е.В. Защитные стратегии нейтрофильных гранулоцитов от патогенных бактерий. Здоровье. Медицинская экология. Наука. 2017;(1):4–18. https://doi.org/10.5281/zenodo.345606.; Uribe-Querol E., Rosales C. Neutrophils in cancer: two sides of the same coin. J Immunol Res. 2015;2015:983698. https://doi.org/10.1155/2015/983698.; Солопова А.Г., Москвичёва В.С., Блбулян Т.А. и др. Актуальные вопросы профилактики, диагностики и лечения рака вульвы и влагалища. Акушерство, Гинекология и Репродукция. 2018;12(4):62–70. https://doi.org/10.17749/2313-7347.2018.12.4.062-070.; Shaul M.E., Fridlender Z.G. Cancer-related circulating and tumor-associated neutrophils – subtypes, sources and function. FEBS J. 2018;285(23):4316–42. https://doi.org/10.1111/febs.14524.; Merza M., Hartman H., Rahman M. et al. Neutrophil extracellular traps induce trypsin activation, Inflammation, and tissue damage in mice with severe acute pancreatitis. Gastroenterology. 2015;149(7):1920–31.e8. https://doi.org/10.1053/j.gastro.2015.08.026.; Metzler K.D., Fuchs T.A., Nauseef W.M. et al. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood. 2011;117(3):953–9. https://doi.org/10.1182/blood-2010-06-290171.; Pahler J.C., Tazzyman S., Erez N. et al. Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia. 2008;10(4):329–39. https://doi.org/10.1593/neo.07871.; Valadez-Cosmes P., Raftopoulou S., Mihalic Z.N. et al. Myeloperoxidase: growing importance in cancer pathogenesis and potential drug target. Pharmacol Ther. 2022;236:108052. https://doi.org/10.1016/j.pharmthera.2021.108052.; Cai H., Chuang C.Y., Hawkins C.L., Davies M.J. Binding of myeloperoxidase to the extracellular matrix of smooth muscle cells and subsequent matrix modification. Sci Rep. 2020;10(1):666. https://doi.org/10.1038/s41598-019-57299-6.; Нестерова И.В., Ковалева С.В., Фомичева Е.В. и др. Клинико-иммунологические параллели при неопластических заболеваниях органов пищеварения: клинические маркеры иммунодефицита и нарушения функционирования микробицидных и цитотоксических механизмов нейтрофильных гранулоцитов. XIV Международный конгресс по реабилитации в медицине и иммунореабилитации: тезисы докладов. Израиль, 2009. 2009;11(1):79a.; de Bont C.M., Eerden N., Boelens W.C., Pruijn G.J.M. Neutrophil proteases degrade autoepitopes of NET-associated proteins. Clin Exp Immunol. 2020;199(1):1–8. https://doi.org/10.1111/cei.13392.; López-Otín C., Matrisian L.M. Emerging roles of proteases in tumour suppression. Nat Rev Cancer. 2007;7(10):800–8. https://doi.org/10.1038/nrc2228.; Moali C., Hulmes D.J.S. Extracellular and cell surface proteases in wound healing: new players are still emerging. Eur J Dermatol. 2009;19(6):552–64. https://doi.org/10.1684/ejd.2009.0770.; Sanderson R.D., Bandari S.K., Vlodavsky I. Proteases and glycosidases on the surface of exosomes: newly discovered mechanisms for extracellular remodeling. Matrix Biol. 2019;75–76:160–9. https://doi.org/10.1016/j.matbio.2017.10.007.; Nyberg P., Ylipalosaari M., Sorsa T., Salo T. Trypsins and their role in carcinoma growth. Exp Cell Res. 2006;312(8):1219–28. https://doi.org/10.1016/j.yexcr.2005.12.024.; Vilen S.-T., Nyberg P., Hukkanen M. Intracellular co-localization of trypsin-2 and matrix metalloprotease-9: possible proteolytic cascade of trypsin-2, MMP-9 and enterokinase in carcinoma. Exp Cell Res. 2008;314(4):914–26. https://doi.org/10.1016/j.yexcr.2007.10.025.; Morimoto-Kamata R., Yui S. Insulin-like growth factor-1 signaling is responsible for cathepsin G-induced aggregation of breast cancer MCF-7 cells. Cancer Sci. 2017;108(8);1574–83. https://doi.org/10.1111/cas.13286.; Wilson T.J., Nannuru K.C., Futakuchi M. et al. Cathepsin G enhances mammary tumor-induced osteolysis by generating soluble receptor activator of nuclear factor-kappaB ligand. Cancer Res. 2008;68(14):5803–11. https://doi.org/10.1158/0008-5472.CAN-07-5889.; McLoed A.G., Sherrill T.P., Cheng D.-S. et al. Neutrophil-derived IL-1β impairs the efficacy of NF-κB inhibitors against lung cancer. Cell Rep. 2016;16(1):120–32. https://doi.org/10.1016/j.celrep.2016.05.085.; Clancy D.M., Sullivan G.P., Moran H.B.T. et al. Extracellular neutrophil proteases are efficient regulators of IL-1, IL-33, and IL-36 cytokine activity but poor effectors of microbial killing. Cell reports. 2018;22(11):2937–50. https://doi.org/10.1016/j.celrep.2018.02.062.; Acuff H.B., Carter K.J., Fingleton B. et al. Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Res. 2006;66(1):259–66. https://doi.org/10.1158/0008-5472.CAN-05-2502.; Park J.-H., Rasch M.G., Qiu J. et al. Presence of insulin-like growth factor binding proteins correlates with tumor-promoting effects of matrix metalloproteinase 9 in breast cancer. Neoplasia. 2015;17(5):421–33. https://doi.org/10.1016/j.neo.2015.04.003.; Peng Z., Liu C., Victor A.R. et al. Tumors exploit CXCR4hiCD62Llo aged neutrophils to facilitate metastatic spread. Oncoimmunology. 2021;10(1);1870811. https://doi.org/10.1080/2162402X.2020.1870811.; Yang Q., Mas A., Diamond M.P., Al-Hendy A. The mechanism and function of epigenetics in uterine leiomyoma development. Reprod Sci. 2016;23(2):163–75. https://doi.org/10.1177/1933719115584449.; Audia J.E., Campbell R.M. Histone modifications and cancer. Cold Spring Harb Perspect Biol. 2016;8(4):a019521. https://doi.org/10.1101/cshperspect.a019521.; Podaza E., Sabbione F., Risnik D. et al. Neutrophils from chronic lymphocytic leukemia patients exhibit an increased capacity to release extracellular traps (NETs). Cancer Immunol Immunother. 2017;66(1):77–89. https://doi.org/10.1007/s00262-016-1921-7.; Nie M., Yang L., Bi X. et al. Neutrophil extracellular traps induced by IL8 promote diffuse large B-cell lymphoma progression via the TLR9 signaling. Clin Cancer Res. 2019;25(6):1867–79. https://doi.org/10.1158/1078-0432.CCR-18-1226.; Sun N., Li X., Wang Z. et al. A multiscale TiO2 nanorod array for ultrasensitive capture of circulating tumor cells. ACS Appl Mater Interfaces. 2016;8(20):12638–43. https://doi.org/10.1021/acsami.6b02178.; Mao Z., Zhang J., Shi Y. et al. CXCL5 promotes gastric cancer metastasis by inducing epithelial-mesenchymal transition and activating neutrophils. Oncogenesis. 2020;9(7):63. https://doi.org/10.1038/s41389-020-00249-z.; Teijeira A., Garasa S., Gato M. et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity. 2020;52(5):856-871.e8. https://doi.org/10.1016/j.immuni.2020.03.001.; Tohme S., Yazdani H.O., Al-Khafaji A.B. et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 2016;76(6):1367–80. https://doi.org/10.1158/0008-5472.CAN-15-1591.; Fuchs T.A., Brill A., Duerschmied D. et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880–5. https://doi.org/10.1073/pnas.1005743107.; Chaffer C.L., Weinberg R.A. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64. https://doi.org/10.1126/science.1203543.; Chen Y., Hu H., Tan S. et al. The role of neutrophil extracellular traps in cancer progression, metastasis and therapy. Exp Hematol Oncol. 2022;11(1):99. https://doi.org/10.1186/s40164-022-00345-3.; Farrera C., Fadeel B. Macrophage clearance of neutrophil extracellular traps is a silent process. J Immunol. 2013;191(5):2647–56. https://doi.org/10.4049/jimmunol.1300436.; Oklu R., Sheth R.A., Wong K.H.K. et al. Neutrophil extracellular traps are increased in cancer patients but does not associate with venous thrombosis. Cardiovasc Diagns Ther. 2017;7(Suppl 3):S140–S149. https://doi.org/10.21037/cdt.2017.08.01.; Li Y., Yang Y., Gan T. et al. Extracellular RNAs from lung cancer cells activate epithelial cells and induce neutrophil extracellular traps. Int J Oncol. 2019;55(1):69–80. https://doi.org/10.3892/ijo.2019.4808.; Klebanoff S.J. Myeloperoxidase: friend and foe. J Leukoc Biol. 2005;77(5):598–625. https://doi.org/10.1189/jlb.1204697.; Cools-Lartigue J., Spicer J., Najmeh S., Ferri L. Neutrophil extracellular traps in cancer progression. Cell Mol Life Sci. 2014;71(21):4179–94. https://doi.org/10.1007/s00018-014-1683-3.; Berger-Achituv S., Brinkmann V., Abed U.A. et al. A proposed role for neutrophil extracellular traps in cancer immunoediting. Front Immunol. 2013;4:48. https://doi.org/10.3389/fimmu.2013.00048.; Thalin C., Lundström S., Seignez C. et al. Citrullinated histone H3 as a novel prognostic blood marker in patients with advanced cancer. PLoS One. 2018;13(1):e0191231. https://doi.org/10.1371/journal.pone.0191231.; Cedervall J., Dragomir A., Saupe F. et al. Pharmacological targeting of peptidylarginine deiminase 4 prevents cancer-associated kidney injury in mice. Oncoimmunology. 2017;6(8):e1320009. https://doi.org/10.1080/2162402X.2017.1320009.; Hisada Y., Grover S.P., Maqsood A. et al. Neutrophils and neutrophil extracellular traps enhance venous thrombosis in mice bearing human pancreatic tumors. Haematologica. 2020;105(1):218–25. https://doi.org/10.3324/haematol.2019.217083.; Zhu T., Zou X., Yang C. et al. Neutrophil extracellular traps promote gastric cancer metastasis by inducing epithelial-mesenchymal transition. Int J Mol Med. 2021;48(1):127. https://doi.org/10.3892/ijmm.2021.4960.; Volkov D.V., Tetz G.V., Rubtsov Y.P. et al. Neutrophil extracellular traps (NETs): opportunities for targeted therapy. Acta Naturae. 2021;13(3):15–23. https://doi.org/10.32607/actanaturae.11503.; Zhang Y., Chandra V., Sanchez E.R. et al. Interleukin-17-induced neutrophil extracellular traps mediate resistance to checkpoint blockade in pancreatic cancer. J Exp Med. 2020:217(12):e20190354. https://doi.org/10.1084/jem.20190354.; Schalper K.A., Carleton M., Zhou M. et al. Elevated serum interleukin-8 is associated with enhanced intratumor neutrophils and reduced clinical benefit of immune-checkpoint inhibitors. Nat Med. 2020;26(5):688–92. https://doi.org/10.1038/s41591-020-0856-x.; https://www.gynecology.su/jour/article/view/1856 |
| DOI: | 10.17749/2313-7347/ob.gyn.rep.2023.447 |
| Availability: | https://www.gynecology.su/jour/article/view/1856 https://doi.org/10.17749/2313-7347/ob.gyn.rep.2023.447 |
| Rights: | Authors who publish with this journal agree to the following terms:Authors grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). ; Авторы, публикующиеся в данном журнале, соглашаются со следующим:Авторы предоставляют журналу право первой публикации работы на условиях лицензии Creative Commons Attribution License, которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы сохраняют право заключать отдельные контрактные договорённости, касающиеся не-эксклюзивного распространения версии работы в опубликованном здесь виде (например, размещение ее в институтском хранилище, публикацию в книге), со ссылкой на ее оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). |
| Accession Number: | edsbas.5AC5E319 |
| Database: | BASE |
| Abstract: | The formation of neutrophil extracellular traps (NETs), described first in 2004 as a previously unknown neutrophil strategy for combating microbes, has been attracting a growing interest in research community. NETs play a key role in inflammation and infection exploiting effector functions such as degranulation, phagocytosis as well as production of reactive oxygen species (ROS). NETs play a crucial role in defense against systemic infections. Additionally NETs involved in inflammation, and in the pathogenesis of non-infectious diseases, such as autoimmune diseases and cancer. ; Образование внеклеточных ловушек нейтрофилов (англ. neutrophil extracellular traps, NETs), впервые описанное в 2004 г. как ранее неизвестная стратегия нейтрофилов для борьбы с микробами, привлекает растущий интерес в исследовательском сообществе. NETs выполняют ключевую роль в воспалении и инфекции, где они используют такие эффекторные функции, как дегрануляция, фагоцитоз, образование активных форм кислорода (англ. reactive oxygen species, ROS). NETs играют решающую роль в реализации защитно-приспособительных процессов, таких как воспаление, и патогенезе неинфекционных заболеваний, таких как аутоиммунные заболевания и рак. |
|---|---|
| DOI: | 10.17749/2313-7347/ob.gyn.rep.2023.447 |
Nájsť tento článok vo Web of Science