Quantum variational optimization methods and their applications ; Méthodes d'optimisation variationnelles quantiques et leurs applications

Uloženo v:
Podrobná bibliografie
Název: Quantum variational optimization methods and their applications ; Méthodes d'optimisation variationnelles quantiques et leurs applications
Autoři: Chatterjee, Yagnik
Přispěvatelé: Methods, Algorithms for Operations REsearch (LIRMM, Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Université de Montpellier, Eric Bourreau
Zdroj: https://theses.hal.science/tel-04766221 ; Micro and nanotechnologies/Microelectronics. Université de Montpellier, 2024. English. ⟨NNT : 2024UMONS022⟩.
Informace o vydavateli: CCSD
Rok vydání: 2024
Sbírka: Université de Montpellier: HAL
Témata: Combinatorial Optimization, Quantum variational algorithms, Quantum computing, Calcul Quantique, Algorithmes variationnels quantiques, Optimisation combinatoire, [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics
Popis: Quantum computing is a rapidly developing field that has seen a huge amount of interest in the last couple of decades due to its promise of revolutionizing several domains of business and science. It presents a new way of doing computations by making use of fundamental properties of quantum mechanics such as superposition and entanglement. Optimization, on the other hand, is a field that is omnipresent in the industry and where small improvements can have a significant impact. This thesis aims to tackle optimization problems using quantum algorithms.NP-hard optimization problems are not believed to be exactly solvable through general polynomial time algorithms. Variational quantum algorithms (VQAs) to address such combinatorial problems have been of great interest recently. Such algorithms are heuristic and aim to obtain an approximate solution. The hardware, however, is still in its infancy and the current Noisy Intermediate Scale Quantum (NISQ) computers are not able to optimize industrially relevant problems. Moreover, the storage of qubits and introduction of entanglement require extreme physical conditions.An issue with contemporary quantum optimization algorithms such as the Quantum Approximate Optimization Algorithm (QAOA) is that they scale linearly with problem size. To tackle this issue, we present the LogQ encoding, using which we can design quantum variational algorithms that scale logarithmically with problem size - opening an avenue for treating optimization problems of unprecedented scale on gate-based quantum computers. We show how this algorithm can be applied to several combinatorial optimization problems such as Maximum Cut, Minimum Partition, Maximum Clique and Maximum Weighted Independent Set (MWIS). Subsequently, these algorithms are tested on a quantum simulator with graph sizes of over a hundred nodes and on a real quantum computer up to graph sizes of 256. To our knowledge, these constitute the largest realistic combinatorial optimization problems ever run on a NISQ device, overcoming ...
Druh dokumentu: doctoral or postdoctoral thesis
Jazyk: English
Relation: NNT: 2024UMONS022
Dostupnost: https://theses.hal.science/tel-04766221
https://theses.hal.science/tel-04766221v1/document
https://theses.hal.science/tel-04766221v1/file/CHATTERJEE_2024_archivage.pdf
Rights: info:eu-repo/semantics/OpenAccess
Přístupové číslo: edsbas.5A7FE48E
Databáze: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://theses.hal.science/tel-04766221#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Chatterjee%20Y
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.5A7FE48E
RelevancyScore: 884
AccessLevel: 3
PubType: Dissertation/ Thesis
PubTypeId: dissertation
PreciseRelevancyScore: 884.306396484375
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Quantum variational optimization methods and their applications ; Méthodes d'optimisation variationnelles quantiques et leurs applications
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Chatterjee%2C+Yagnik%22">Chatterjee, Yagnik</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Methods, Algorithms for Operations REsearch (LIRMM<br />Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)<br />Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)<br />Université de Montpellier<br />Eric Bourreau
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>https://theses.hal.science/tel-04766221 ; Micro and nanotechnologies/Microelectronics. Université de Montpellier, 2024. English. ⟨NNT : 2024UMONS022⟩</i>.
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: CCSD
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2024
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Université de Montpellier: HAL
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Combinatorial+Optimization%22">Combinatorial Optimization</searchLink><br /><searchLink fieldCode="DE" term="%22Quantum+variational+algorithms%22">Quantum variational algorithms</searchLink><br /><searchLink fieldCode="DE" term="%22Quantum+computing%22">Quantum computing</searchLink><br /><searchLink fieldCode="DE" term="%22Calcul+Quantique%22">Calcul Quantique</searchLink><br /><searchLink fieldCode="DE" term="%22Algorithmes+variationnels+quantiques%22">Algorithmes variationnels quantiques</searchLink><br /><searchLink fieldCode="DE" term="%22Optimisation+combinatoire%22">Optimisation combinatoire</searchLink><br /><searchLink fieldCode="DE" term="%22[SPI%2ENANO]Engineering+Sciences+[physics]%2FMicro+and+nanotechnologies%2FMicroelectronics%22">[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Quantum computing is a rapidly developing field that has seen a huge amount of interest in the last couple of decades due to its promise of revolutionizing several domains of business and science. It presents a new way of doing computations by making use of fundamental properties of quantum mechanics such as superposition and entanglement. Optimization, on the other hand, is a field that is omnipresent in the industry and where small improvements can have a significant impact. This thesis aims to tackle optimization problems using quantum algorithms.NP-hard optimization problems are not believed to be exactly solvable through general polynomial time algorithms. Variational quantum algorithms (VQAs) to address such combinatorial problems have been of great interest recently. Such algorithms are heuristic and aim to obtain an approximate solution. The hardware, however, is still in its infancy and the current Noisy Intermediate Scale Quantum (NISQ) computers are not able to optimize industrially relevant problems. Moreover, the storage of qubits and introduction of entanglement require extreme physical conditions.An issue with contemporary quantum optimization algorithms such as the Quantum Approximate Optimization Algorithm (QAOA) is that they scale linearly with problem size. To tackle this issue, we present the LogQ encoding, using which we can design quantum variational algorithms that scale logarithmically with problem size - opening an avenue for treating optimization problems of unprecedented scale on gate-based quantum computers. We show how this algorithm can be applied to several combinatorial optimization problems such as Maximum Cut, Minimum Partition, Maximum Clique and Maximum Weighted Independent Set (MWIS). Subsequently, these algorithms are tested on a quantum simulator with graph sizes of over a hundred nodes and on a real quantum computer up to graph sizes of 256. To our knowledge, these constitute the largest realistic combinatorial optimization problems ever run on a NISQ device, overcoming ...
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: doctoral or postdoctoral thesis
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: NNT: 2024UMONS022
– Name: URL
  Label: Availability
  Group: URL
  Data: https://theses.hal.science/tel-04766221<br />https://theses.hal.science/tel-04766221v1/document<br />https://theses.hal.science/tel-04766221v1/file/CHATTERJEE_2024_archivage.pdf
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: info:eu-repo/semantics/OpenAccess
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.5A7FE48E
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.5A7FE48E
RecordInfo BibRecord:
  BibEntity:
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Combinatorial Optimization
        Type: general
      – SubjectFull: Quantum variational algorithms
        Type: general
      – SubjectFull: Quantum computing
        Type: general
      – SubjectFull: Calcul Quantique
        Type: general
      – SubjectFull: Algorithmes variationnels quantiques
        Type: general
      – SubjectFull: Optimisation combinatoire
        Type: general
      – SubjectFull: [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics
        Type: general
    Titles:
      – TitleFull: Quantum variational optimization methods and their applications ; Méthodes d'optimisation variationnelles quantiques et leurs applications
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Chatterjee, Yagnik
      – PersonEntity:
          Name:
            NameFull: Methods, Algorithms for Operations REsearch (LIRMM
      – PersonEntity:
          Name:
            NameFull: Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
      – PersonEntity:
          Name:
            NameFull: Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
      – PersonEntity:
          Name:
            NameFull: Université de Montpellier
      – PersonEntity:
          Name:
            NameFull: Eric Bourreau
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2024
          Identifiers:
            – Type: issn-locals
              Value: edsbas
            – Type: issn-locals
              Value: edsbas.oa
          Titles:
            – TitleFull: https://theses.hal.science/tel-04766221 ; Micro and nanotechnologies/Microelectronics. Université de Montpellier, 2024. English. ⟨NNT : 2024UMONS022⟩
              Type: main
ResultId 1