Quantum variational optimization methods and their applications ; Méthodes d'optimisation variationnelles quantiques et leurs applications
Uloženo v:
| Název: | Quantum variational optimization methods and their applications ; Méthodes d'optimisation variationnelles quantiques et leurs applications |
|---|---|
| Autoři: | Chatterjee, Yagnik |
| Přispěvatelé: | Methods, Algorithms for Operations REsearch (LIRMM, Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Université de Montpellier, Eric Bourreau |
| Zdroj: | https://theses.hal.science/tel-04766221 ; Micro and nanotechnologies/Microelectronics. Université de Montpellier, 2024. English. ⟨NNT : 2024UMONS022⟩. |
| Informace o vydavateli: | CCSD |
| Rok vydání: | 2024 |
| Sbírka: | Université de Montpellier: HAL |
| Témata: | Combinatorial Optimization, Quantum variational algorithms, Quantum computing, Calcul Quantique, Algorithmes variationnels quantiques, Optimisation combinatoire, [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics |
| Popis: | Quantum computing is a rapidly developing field that has seen a huge amount of interest in the last couple of decades due to its promise of revolutionizing several domains of business and science. It presents a new way of doing computations by making use of fundamental properties of quantum mechanics such as superposition and entanglement. Optimization, on the other hand, is a field that is omnipresent in the industry and where small improvements can have a significant impact. This thesis aims to tackle optimization problems using quantum algorithms.NP-hard optimization problems are not believed to be exactly solvable through general polynomial time algorithms. Variational quantum algorithms (VQAs) to address such combinatorial problems have been of great interest recently. Such algorithms are heuristic and aim to obtain an approximate solution. The hardware, however, is still in its infancy and the current Noisy Intermediate Scale Quantum (NISQ) computers are not able to optimize industrially relevant problems. Moreover, the storage of qubits and introduction of entanglement require extreme physical conditions.An issue with contemporary quantum optimization algorithms such as the Quantum Approximate Optimization Algorithm (QAOA) is that they scale linearly with problem size. To tackle this issue, we present the LogQ encoding, using which we can design quantum variational algorithms that scale logarithmically with problem size - opening an avenue for treating optimization problems of unprecedented scale on gate-based quantum computers. We show how this algorithm can be applied to several combinatorial optimization problems such as Maximum Cut, Minimum Partition, Maximum Clique and Maximum Weighted Independent Set (MWIS). Subsequently, these algorithms are tested on a quantum simulator with graph sizes of over a hundred nodes and on a real quantum computer up to graph sizes of 256. To our knowledge, these constitute the largest realistic combinatorial optimization problems ever run on a NISQ device, overcoming ... |
| Druh dokumentu: | doctoral or postdoctoral thesis |
| Jazyk: | English |
| Relation: | NNT: 2024UMONS022 |
| Dostupnost: | https://theses.hal.science/tel-04766221 https://theses.hal.science/tel-04766221v1/document https://theses.hal.science/tel-04766221v1/file/CHATTERJEE_2024_archivage.pdf |
| Rights: | info:eu-repo/semantics/OpenAccess |
| Přístupové číslo: | edsbas.5A7FE48E |
| Databáze: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://theses.hal.science/tel-04766221# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Chatterjee%20Y Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.5A7FE48E RelevancyScore: 884 AccessLevel: 3 PubType: Dissertation/ Thesis PubTypeId: dissertation PreciseRelevancyScore: 884.306396484375 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Quantum variational optimization methods and their applications ; Méthodes d'optimisation variationnelles quantiques et leurs applications – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Chatterjee%2C+Yagnik%22">Chatterjee, Yagnik</searchLink> – Name: Author Label: Contributors Group: Au Data: Methods, Algorithms for Operations REsearch (LIRMM<br />Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)<br />Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)<br />Université de Montpellier<br />Eric Bourreau – Name: TitleSource Label: Source Group: Src Data: <i>https://theses.hal.science/tel-04766221 ; Micro and nanotechnologies/Microelectronics. Université de Montpellier, 2024. English. ⟨NNT : 2024UMONS022⟩</i>. – Name: Publisher Label: Publisher Information Group: PubInfo Data: CCSD – Name: DatePubCY Label: Publication Year Group: Date Data: 2024 – Name: Subset Label: Collection Group: HoldingsInfo Data: Université de Montpellier: HAL – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Combinatorial+Optimization%22">Combinatorial Optimization</searchLink><br /><searchLink fieldCode="DE" term="%22Quantum+variational+algorithms%22">Quantum variational algorithms</searchLink><br /><searchLink fieldCode="DE" term="%22Quantum+computing%22">Quantum computing</searchLink><br /><searchLink fieldCode="DE" term="%22Calcul+Quantique%22">Calcul Quantique</searchLink><br /><searchLink fieldCode="DE" term="%22Algorithmes+variationnels+quantiques%22">Algorithmes variationnels quantiques</searchLink><br /><searchLink fieldCode="DE" term="%22Optimisation+combinatoire%22">Optimisation combinatoire</searchLink><br /><searchLink fieldCode="DE" term="%22[SPI%2ENANO]Engineering+Sciences+[physics]%2FMicro+and+nanotechnologies%2FMicroelectronics%22">[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics</searchLink> – Name: Abstract Label: Description Group: Ab Data: Quantum computing is a rapidly developing field that has seen a huge amount of interest in the last couple of decades due to its promise of revolutionizing several domains of business and science. It presents a new way of doing computations by making use of fundamental properties of quantum mechanics such as superposition and entanglement. Optimization, on the other hand, is a field that is omnipresent in the industry and where small improvements can have a significant impact. This thesis aims to tackle optimization problems using quantum algorithms.NP-hard optimization problems are not believed to be exactly solvable through general polynomial time algorithms. Variational quantum algorithms (VQAs) to address such combinatorial problems have been of great interest recently. Such algorithms are heuristic and aim to obtain an approximate solution. The hardware, however, is still in its infancy and the current Noisy Intermediate Scale Quantum (NISQ) computers are not able to optimize industrially relevant problems. Moreover, the storage of qubits and introduction of entanglement require extreme physical conditions.An issue with contemporary quantum optimization algorithms such as the Quantum Approximate Optimization Algorithm (QAOA) is that they scale linearly with problem size. To tackle this issue, we present the LogQ encoding, using which we can design quantum variational algorithms that scale logarithmically with problem size - opening an avenue for treating optimization problems of unprecedented scale on gate-based quantum computers. We show how this algorithm can be applied to several combinatorial optimization problems such as Maximum Cut, Minimum Partition, Maximum Clique and Maximum Weighted Independent Set (MWIS). Subsequently, these algorithms are tested on a quantum simulator with graph sizes of over a hundred nodes and on a real quantum computer up to graph sizes of 256. To our knowledge, these constitute the largest realistic combinatorial optimization problems ever run on a NISQ device, overcoming ... – Name: TypeDocument Label: Document Type Group: TypDoc Data: doctoral or postdoctoral thesis – Name: Language Label: Language Group: Lang Data: English – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: NNT: 2024UMONS022 – Name: URL Label: Availability Group: URL Data: https://theses.hal.science/tel-04766221<br />https://theses.hal.science/tel-04766221v1/document<br />https://theses.hal.science/tel-04766221v1/file/CHATTERJEE_2024_archivage.pdf – Name: Copyright Label: Rights Group: Cpyrght Data: info:eu-repo/semantics/OpenAccess – Name: AN Label: Accession Number Group: ID Data: edsbas.5A7FE48E |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.5A7FE48E |
| RecordInfo | BibRecord: BibEntity: Languages: – Text: English Subjects: – SubjectFull: Combinatorial Optimization Type: general – SubjectFull: Quantum variational algorithms Type: general – SubjectFull: Quantum computing Type: general – SubjectFull: Calcul Quantique Type: general – SubjectFull: Algorithmes variationnels quantiques Type: general – SubjectFull: Optimisation combinatoire Type: general – SubjectFull: [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics Type: general Titles: – TitleFull: Quantum variational optimization methods and their applications ; Méthodes d'optimisation variationnelles quantiques et leurs applications Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Chatterjee, Yagnik – PersonEntity: Name: NameFull: Methods, Algorithms for Operations REsearch (LIRMM – PersonEntity: Name: NameFull: Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) – PersonEntity: Name: NameFull: Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) – PersonEntity: Name: NameFull: Université de Montpellier – PersonEntity: Name: NameFull: Eric Bourreau IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2024 Identifiers: – Type: issn-locals Value: edsbas – Type: issn-locals Value: edsbas.oa Titles: – TitleFull: https://theses.hal.science/tel-04766221 ; Micro and nanotechnologies/Microelectronics. Université de Montpellier, 2024. English. ⟨NNT : 2024UMONS022⟩ Type: main |
| ResultId | 1 |
Nájsť tento článok vo Web of Science