Fast Content-Based File Type Identification
Uložené v:
| Názov: | Fast Content-Based File Type Identification |
|---|---|
| Autori: | Ahmed, Irfan, Lhee, Kyung-Suk, Shin, Hyun-Jung, Hong, Man-Pyo |
| Prispievatelia: | Information Security Institute, Queensland University of Technology Brisbane (QUT), Ajou University, Gilbert Peterson, Sujeet Shenoi, TC 11, WG 11.9 |
| Zdroj: | IFIP Advances in Information and Communication Technology ; 7th Digital Forensics (DF) ; https://inria.hal.science/hal-01569553 ; 7th Digital Forensics (DF), Jan 2011, Orlando, FL, United States. pp.65-75, ⟨10.1007/978-3-642-24212-0_5⟩ |
| Informácie o vydavateľovi: | CCSD Springer |
| Rok vydania: | 2011 |
| Predmety: | File type identification, file content classification, byte frequency, [INFO]Computer Science [cs] |
| Geografické téma: | Orlando, FL, United States |
| Popis: | Part 2: FORENSIC TECHNIQUES ; International audience ; Digital forensic examiners often need to identify the type of a file or file fragment based on the content of the file. Content-based file type identification schemes typically use a byte frequency distribution with statistical machine learning to classify file types. Most algorithms analyze the entire file content to obtain the byte frequency distribution, a technique that is inefficient and time consuming. This paper proposes two techniques for reducing the classification time. The first technique selects a subset of features based on the frequency of occurrence. The second speeds up classification by randomly sampling file blocks. Experimental results demonstrate that up to a fifteen-fold reduction in computational time can be achieved with limited impact on accuracy. |
| Druh dokumentu: | conference object |
| Jazyk: | English |
| DOI: | 10.1007/978-3-642-24212-0_5 |
| Dostupnosť: | https://inria.hal.science/hal-01569553 https://inria.hal.science/hal-01569553v1/document https://inria.hal.science/hal-01569553v1/file/978-3-642-24212-0_5_Chapter.pdf https://doi.org/10.1007/978-3-642-24212-0_5 |
| Rights: | http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess |
| Prístupové číslo: | edsbas.54718D05 |
| Databáza: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://inria.hal.science/hal-01569553# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Ahmed%20I Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.54718D05 RelevancyScore: 858 AccessLevel: 3 PubType: Conference PubTypeId: conference PreciseRelevancyScore: 857.654235839844 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Fast Content-Based File Type Identification – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Ahmed%2C+Irfan%22">Ahmed, Irfan</searchLink><br /><searchLink fieldCode="AR" term="%22Lhee%2C+Kyung-Suk%22">Lhee, Kyung-Suk</searchLink><br /><searchLink fieldCode="AR" term="%22Shin%2C+Hyun-Jung%22">Shin, Hyun-Jung</searchLink><br /><searchLink fieldCode="AR" term="%22Hong%2C+Man-Pyo%22">Hong, Man-Pyo</searchLink> – Name: Author Label: Contributors Group: Au Data: Information Security Institute<br />Queensland University of Technology Brisbane (QUT)<br />Ajou University<br />Gilbert Peterson<br />Sujeet Shenoi<br />TC 11<br />WG 11.9 – Name: TitleSource Label: Source Group: Src Data: IFIP Advances in Information and Communication Technology ; 7th Digital Forensics (DF) ; https://inria.hal.science/hal-01569553 ; 7th Digital Forensics (DF), Jan 2011, Orlando, FL, United States. pp.65-75, ⟨10.1007/978-3-642-24212-0_5⟩ – Name: Publisher Label: Publisher Information Group: PubInfo Data: CCSD<br />Springer – Name: DatePubCY Label: Publication Year Group: Date Data: 2011 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22File+type+identification%22">File type identification</searchLink><br /><searchLink fieldCode="DE" term="%22file+content+classification%22">file content classification</searchLink><br /><searchLink fieldCode="DE" term="%22byte+frequency%22">byte frequency</searchLink><br /><searchLink fieldCode="DE" term="%22[INFO]Computer+Science+[cs]%22">[INFO]Computer Science [cs]</searchLink> – Name: Subject Label: Subject Geographic Group: Su Data: <searchLink fieldCode="DE" term="%22Orlando%22">Orlando</searchLink><br /><searchLink fieldCode="DE" term="%22FL%22">FL</searchLink><br /><searchLink fieldCode="DE" term="%22United+States%22">United States</searchLink> – Name: Abstract Label: Description Group: Ab Data: Part 2: FORENSIC TECHNIQUES ; International audience ; Digital forensic examiners often need to identify the type of a file or file fragment based on the content of the file. Content-based file type identification schemes typically use a byte frequency distribution with statistical machine learning to classify file types. Most algorithms analyze the entire file content to obtain the byte frequency distribution, a technique that is inefficient and time consuming. This paper proposes two techniques for reducing the classification time. The first technique selects a subset of features based on the frequency of occurrence. The second speeds up classification by randomly sampling file blocks. Experimental results demonstrate that up to a fifteen-fold reduction in computational time can be achieved with limited impact on accuracy. – Name: TypeDocument Label: Document Type Group: TypDoc Data: conference object – Name: Language Label: Language Group: Lang Data: English – Name: DOI Label: DOI Group: ID Data: 10.1007/978-3-642-24212-0_5 – Name: URL Label: Availability Group: URL Data: https://inria.hal.science/hal-01569553<br />https://inria.hal.science/hal-01569553v1/document<br />https://inria.hal.science/hal-01569553v1/file/978-3-642-24212-0_5_Chapter.pdf<br />https://doi.org/10.1007/978-3-642-24212-0_5 – Name: Copyright Label: Rights Group: Cpyrght Data: http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess – Name: AN Label: Accession Number Group: ID Data: edsbas.54718D05 |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.54718D05 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1007/978-3-642-24212-0_5 Languages: – Text: English Subjects: – SubjectFull: Orlando Type: general – SubjectFull: FL Type: general – SubjectFull: United States Type: general – SubjectFull: File type identification Type: general – SubjectFull: file content classification Type: general – SubjectFull: byte frequency Type: general – SubjectFull: [INFO]Computer Science [cs] Type: general Titles: – TitleFull: Fast Content-Based File Type Identification Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Ahmed, Irfan – PersonEntity: Name: NameFull: Lhee, Kyung-Suk – PersonEntity: Name: NameFull: Shin, Hyun-Jung – PersonEntity: Name: NameFull: Hong, Man-Pyo – PersonEntity: Name: NameFull: Information Security Institute – PersonEntity: Name: NameFull: Queensland University of Technology Brisbane (QUT) – PersonEntity: Name: NameFull: Ajou University – PersonEntity: Name: NameFull: Gilbert Peterson – PersonEntity: Name: NameFull: Sujeet Shenoi – PersonEntity: Name: NameFull: TC 11 – PersonEntity: Name: NameFull: WG 11.9 IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2011 Identifiers: – Type: issn-locals Value: edsbas – Type: issn-locals Value: edsbas.oa Titles: – TitleFull: IFIP Advances in Information and Communication Technology ; 7th Digital Forensics (DF) ; https://inria.hal.science/hal-01569553 ; 7th Digital Forensics (DF), Jan 2011, Orlando, FL, United States. pp.65-75, ⟨10.1007/978-3-642-24212-0_5⟩ Type: main |
| ResultId | 1 |
Nájsť tento článok vo Web of Science