Anomaly detection via blockchained deep learning smart contracts in industry 4.0

Uloženo v:
Podrobná bibliografie
Název: Anomaly detection via blockchained deep learning smart contracts in industry 4.0
Autoři: Demertzis K., Iliadis L., Tziritas N., Kikiras P.
Zdroj: Neural Computing and Applications ; https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088317750&doi=10.1007%2fs00521-020-05189-8&partnerID=40&md5=617ad36ac03a642add4bec4d69f1c6f3
Rok vydání: 2020
Sbírka: University of Thessaly Institutional Repository / Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
Témata: Anomaly detection, Blockchain, Computer systems programming, Deep neural networks, Industrial internet of things (IIoT), Industrial research, Industry 4.0, Network architecture, Network security, Archiving systems, Changing environment, Distributed platforms, Intelligent solutions, Network communications, Operating parameters, Security Architecture, Structural elements, Deep learning, Springer Science and Business Media Deutschland GmbH
Popis: The complexity of threats in the ever-changing environment of modern industry is constantly increasing. At the same time, traditional security systems fail to detect serious threats of increasing depth and duration. Therefore, alternative, intelligent solutions should be used to detect anomalies in the operating parameters of the infrastructures concerned, while ensuring the anonymity and confidentiality of industrial information. Blockchain is an encrypted, distributed archiving system designed to allow for the creation of real-time log files that are unequivocally linked. This ensures the security and transparency of transactions. This research presents, for the first time in the literature, an innovative Blockchain Security Architecture that aims to ensure network communication between traded Industrial Internet of Things devices, following the Industry 4.0 standard and based on Deep Learning Smart Contracts. The proposed smart contracts are implementing (via computer programming) a bilateral traffic control agreement to detect anomalies based on a trained Deep Autoencoder Neural Network. This architecture enables the creation of a secure distributed platform that can control and complete associated transactions in critical infrastructure networks, without the intervention of a single central authority. It is a novel approach that fuses artificial intelligence in the Blockchain, not as a supportive framework that enhances the capabilities of the network, but as an active structural element, indispensable and necessary for its completion. © 2020, Springer-Verlag London Ltd., part of Springer Nature.
Druh dokumentu: article in journal/newspaper
Jazyk: English
ISSN: 09410643
Relation: http://hdl.handle.net/11615/73205
DOI: 10.1007/s00521-020-05189-8
Dostupnost: http://hdl.handle.net/11615/73205
https://doi.org/10.1007/s00521-020-05189-8
Přístupové číslo: edsbas.52632D48
Databáze: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: http://hdl.handle.net/11615/73205#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsbas&genre=article&issn=09410643&ISBN=&volume=&issue=&date=20200101&spage=&pages=&title=Neural Computing and Applications ; https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088317750&doi=10.1007%2fs00521-020-05189-8&partnerID=40&md5=617ad36ac03a642add4bec4d69f1c6f3&atitle=Anomaly%20detection%20via%20blockchained%20deep%20learning%20smart%20contracts%20in%20industry%204.0&aulast=Demertzis%20K.&id=DOI:10.1007/s00521-020-05189-8
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=K.%20D
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.52632D48
RelevancyScore: 835
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 835.017944335938
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Anomaly detection via blockchained deep learning smart contracts in industry 4.0
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Demertzis+K%2E%22">Demertzis K.</searchLink><br /><searchLink fieldCode="AR" term="%22Iliadis+L%2E%22">Iliadis L.</searchLink><br /><searchLink fieldCode="AR" term="%22Tziritas+N%2E%22">Tziritas N.</searchLink><br /><searchLink fieldCode="AR" term="%22Kikiras+P%2E%22">Kikiras P.</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Neural Computing and Applications ; https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088317750&doi=10.1007%2fs00521-020-05189-8&partnerID=40&md5=617ad36ac03a642add4bec4d69f1c6f3
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2020
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: University of Thessaly Institutional Repository / Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Anomaly+detection%22">Anomaly detection</searchLink><br /><searchLink fieldCode="DE" term="%22Blockchain%22">Blockchain</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+systems+programming%22">Computer systems programming</searchLink><br /><searchLink fieldCode="DE" term="%22Deep+neural+networks%22">Deep neural networks</searchLink><br /><searchLink fieldCode="DE" term="%22Industrial+internet+of+things+%28IIoT%29%22">Industrial internet of things (IIoT)</searchLink><br /><searchLink fieldCode="DE" term="%22Industrial+research%22">Industrial research</searchLink><br /><searchLink fieldCode="DE" term="%22Industry+4%2E0%22">Industry 4.0</searchLink><br /><searchLink fieldCode="DE" term="%22Network+architecture%22">Network architecture</searchLink><br /><searchLink fieldCode="DE" term="%22Network+security%22">Network security</searchLink><br /><searchLink fieldCode="DE" term="%22Archiving+systems%22">Archiving systems</searchLink><br /><searchLink fieldCode="DE" term="%22Changing+environment%22">Changing environment</searchLink><br /><searchLink fieldCode="DE" term="%22Distributed+platforms%22">Distributed platforms</searchLink><br /><searchLink fieldCode="DE" term="%22Intelligent+solutions%22">Intelligent solutions</searchLink><br /><searchLink fieldCode="DE" term="%22Network+communications%22">Network communications</searchLink><br /><searchLink fieldCode="DE" term="%22Operating+parameters%22">Operating parameters</searchLink><br /><searchLink fieldCode="DE" term="%22Security+Architecture%22">Security Architecture</searchLink><br /><searchLink fieldCode="DE" term="%22Structural+elements%22">Structural elements</searchLink><br /><searchLink fieldCode="DE" term="%22Deep+learning%22">Deep learning</searchLink><br /><searchLink fieldCode="DE" term="%22Springer+Science+and+Business+Media+Deutschland+GmbH%22">Springer Science and Business Media Deutschland GmbH</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: The complexity of threats in the ever-changing environment of modern industry is constantly increasing. At the same time, traditional security systems fail to detect serious threats of increasing depth and duration. Therefore, alternative, intelligent solutions should be used to detect anomalies in the operating parameters of the infrastructures concerned, while ensuring the anonymity and confidentiality of industrial information. Blockchain is an encrypted, distributed archiving system designed to allow for the creation of real-time log files that are unequivocally linked. This ensures the security and transparency of transactions. This research presents, for the first time in the literature, an innovative Blockchain Security Architecture that aims to ensure network communication between traded Industrial Internet of Things devices, following the Industry 4.0 standard and based on Deep Learning Smart Contracts. The proposed smart contracts are implementing (via computer programming) a bilateral traffic control agreement to detect anomalies based on a trained Deep Autoencoder Neural Network. This architecture enables the creation of a secure distributed platform that can control and complete associated transactions in critical infrastructure networks, without the intervention of a single central authority. It is a novel approach that fuses artificial intelligence in the Blockchain, not as a supportive framework that enhances the capabilities of the network, but as an active structural element, indispensable and necessary for its completion. © 2020, Springer-Verlag London Ltd., part of Springer Nature.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article in journal/newspaper
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 09410643
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: http://hdl.handle.net/11615/73205
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1007/s00521-020-05189-8
– Name: URL
  Label: Availability
  Group: URL
  Data: http://hdl.handle.net/11615/73205<br />https://doi.org/10.1007/s00521-020-05189-8
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.52632D48
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.52632D48
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1007/s00521-020-05189-8
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Anomaly detection
        Type: general
      – SubjectFull: Blockchain
        Type: general
      – SubjectFull: Computer systems programming
        Type: general
      – SubjectFull: Deep neural networks
        Type: general
      – SubjectFull: Industrial internet of things (IIoT)
        Type: general
      – SubjectFull: Industrial research
        Type: general
      – SubjectFull: Industry 4.0
        Type: general
      – SubjectFull: Network architecture
        Type: general
      – SubjectFull: Network security
        Type: general
      – SubjectFull: Archiving systems
        Type: general
      – SubjectFull: Changing environment
        Type: general
      – SubjectFull: Distributed platforms
        Type: general
      – SubjectFull: Intelligent solutions
        Type: general
      – SubjectFull: Network communications
        Type: general
      – SubjectFull: Operating parameters
        Type: general
      – SubjectFull: Security Architecture
        Type: general
      – SubjectFull: Structural elements
        Type: general
      – SubjectFull: Deep learning
        Type: general
      – SubjectFull: Springer Science and Business Media Deutschland GmbH
        Type: general
    Titles:
      – TitleFull: Anomaly detection via blockchained deep learning smart contracts in industry 4.0
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Demertzis K.
      – PersonEntity:
          Name:
            NameFull: Iliadis L.
      – PersonEntity:
          Name:
            NameFull: Tziritas N.
      – PersonEntity:
          Name:
            NameFull: Kikiras P.
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2020
          Identifiers:
            – Type: issn-print
              Value: 09410643
            – Type: issn-locals
              Value: edsbas
          Titles:
            – TitleFull: Neural Computing and Applications ; https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088317750&doi=10.1007%2fs00521-020-05189-8&partnerID=40&md5=617ad36ac03a642add4bec4d69f1c6f3
              Type: main
ResultId 1