Anomaly detection via blockchained deep learning smart contracts in industry 4.0
Uloženo v:
| Název: | Anomaly detection via blockchained deep learning smart contracts in industry 4.0 |
|---|---|
| Autoři: | Demertzis K., Iliadis L., Tziritas N., Kikiras P. |
| Zdroj: | Neural Computing and Applications ; https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088317750&doi=10.1007%2fs00521-020-05189-8&partnerID=40&md5=617ad36ac03a642add4bec4d69f1c6f3 |
| Rok vydání: | 2020 |
| Sbírka: | University of Thessaly Institutional Repository / Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας |
| Témata: | Anomaly detection, Blockchain, Computer systems programming, Deep neural networks, Industrial internet of things (IIoT), Industrial research, Industry 4.0, Network architecture, Network security, Archiving systems, Changing environment, Distributed platforms, Intelligent solutions, Network communications, Operating parameters, Security Architecture, Structural elements, Deep learning, Springer Science and Business Media Deutschland GmbH |
| Popis: | The complexity of threats in the ever-changing environment of modern industry is constantly increasing. At the same time, traditional security systems fail to detect serious threats of increasing depth and duration. Therefore, alternative, intelligent solutions should be used to detect anomalies in the operating parameters of the infrastructures concerned, while ensuring the anonymity and confidentiality of industrial information. Blockchain is an encrypted, distributed archiving system designed to allow for the creation of real-time log files that are unequivocally linked. This ensures the security and transparency of transactions. This research presents, for the first time in the literature, an innovative Blockchain Security Architecture that aims to ensure network communication between traded Industrial Internet of Things devices, following the Industry 4.0 standard and based on Deep Learning Smart Contracts. The proposed smart contracts are implementing (via computer programming) a bilateral traffic control agreement to detect anomalies based on a trained Deep Autoencoder Neural Network. This architecture enables the creation of a secure distributed platform that can control and complete associated transactions in critical infrastructure networks, without the intervention of a single central authority. It is a novel approach that fuses artificial intelligence in the Blockchain, not as a supportive framework that enhances the capabilities of the network, but as an active structural element, indispensable and necessary for its completion. © 2020, Springer-Verlag London Ltd., part of Springer Nature. |
| Druh dokumentu: | article in journal/newspaper |
| Jazyk: | English |
| ISSN: | 09410643 |
| Relation: | http://hdl.handle.net/11615/73205 |
| DOI: | 10.1007/s00521-020-05189-8 |
| Dostupnost: | http://hdl.handle.net/11615/73205 https://doi.org/10.1007/s00521-020-05189-8 |
| Přístupové číslo: | edsbas.52632D48 |
| Databáze: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: http://hdl.handle.net/11615/73205# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsbas&genre=article&issn=09410643&ISBN=&volume=&issue=&date=20200101&spage=&pages=&title=Neural Computing and Applications ; https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088317750&doi=10.1007%2fs00521-020-05189-8&partnerID=40&md5=617ad36ac03a642add4bec4d69f1c6f3&atitle=Anomaly%20detection%20via%20blockchained%20deep%20learning%20smart%20contracts%20in%20industry%204.0&aulast=Demertzis%20K.&id=DOI:10.1007/s00521-020-05189-8 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=K.%20D Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.52632D48 RelevancyScore: 835 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 835.017944335938 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Anomaly detection via blockchained deep learning smart contracts in industry 4.0 – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Demertzis+K%2E%22">Demertzis K.</searchLink><br /><searchLink fieldCode="AR" term="%22Iliadis+L%2E%22">Iliadis L.</searchLink><br /><searchLink fieldCode="AR" term="%22Tziritas+N%2E%22">Tziritas N.</searchLink><br /><searchLink fieldCode="AR" term="%22Kikiras+P%2E%22">Kikiras P.</searchLink> – Name: TitleSource Label: Source Group: Src Data: Neural Computing and Applications ; https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088317750&doi=10.1007%2fs00521-020-05189-8&partnerID=40&md5=617ad36ac03a642add4bec4d69f1c6f3 – Name: DatePubCY Label: Publication Year Group: Date Data: 2020 – Name: Subset Label: Collection Group: HoldingsInfo Data: University of Thessaly Institutional Repository / Ιδρυματικό Αποθετήριο Πανεπιστημίου Θεσσαλίας – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Anomaly+detection%22">Anomaly detection</searchLink><br /><searchLink fieldCode="DE" term="%22Blockchain%22">Blockchain</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+systems+programming%22">Computer systems programming</searchLink><br /><searchLink fieldCode="DE" term="%22Deep+neural+networks%22">Deep neural networks</searchLink><br /><searchLink fieldCode="DE" term="%22Industrial+internet+of+things+%28IIoT%29%22">Industrial internet of things (IIoT)</searchLink><br /><searchLink fieldCode="DE" term="%22Industrial+research%22">Industrial research</searchLink><br /><searchLink fieldCode="DE" term="%22Industry+4%2E0%22">Industry 4.0</searchLink><br /><searchLink fieldCode="DE" term="%22Network+architecture%22">Network architecture</searchLink><br /><searchLink fieldCode="DE" term="%22Network+security%22">Network security</searchLink><br /><searchLink fieldCode="DE" term="%22Archiving+systems%22">Archiving systems</searchLink><br /><searchLink fieldCode="DE" term="%22Changing+environment%22">Changing environment</searchLink><br /><searchLink fieldCode="DE" term="%22Distributed+platforms%22">Distributed platforms</searchLink><br /><searchLink fieldCode="DE" term="%22Intelligent+solutions%22">Intelligent solutions</searchLink><br /><searchLink fieldCode="DE" term="%22Network+communications%22">Network communications</searchLink><br /><searchLink fieldCode="DE" term="%22Operating+parameters%22">Operating parameters</searchLink><br /><searchLink fieldCode="DE" term="%22Security+Architecture%22">Security Architecture</searchLink><br /><searchLink fieldCode="DE" term="%22Structural+elements%22">Structural elements</searchLink><br /><searchLink fieldCode="DE" term="%22Deep+learning%22">Deep learning</searchLink><br /><searchLink fieldCode="DE" term="%22Springer+Science+and+Business+Media+Deutschland+GmbH%22">Springer Science and Business Media Deutschland GmbH</searchLink> – Name: Abstract Label: Description Group: Ab Data: The complexity of threats in the ever-changing environment of modern industry is constantly increasing. At the same time, traditional security systems fail to detect serious threats of increasing depth and duration. Therefore, alternative, intelligent solutions should be used to detect anomalies in the operating parameters of the infrastructures concerned, while ensuring the anonymity and confidentiality of industrial information. Blockchain is an encrypted, distributed archiving system designed to allow for the creation of real-time log files that are unequivocally linked. This ensures the security and transparency of transactions. This research presents, for the first time in the literature, an innovative Blockchain Security Architecture that aims to ensure network communication between traded Industrial Internet of Things devices, following the Industry 4.0 standard and based on Deep Learning Smart Contracts. The proposed smart contracts are implementing (via computer programming) a bilateral traffic control agreement to detect anomalies based on a trained Deep Autoencoder Neural Network. This architecture enables the creation of a secure distributed platform that can control and complete associated transactions in critical infrastructure networks, without the intervention of a single central authority. It is a novel approach that fuses artificial intelligence in the Blockchain, not as a supportive framework that enhances the capabilities of the network, but as an active structural element, indispensable and necessary for its completion. © 2020, Springer-Verlag London Ltd., part of Springer Nature. – Name: TypeDocument Label: Document Type Group: TypDoc Data: article in journal/newspaper – Name: Language Label: Language Group: Lang Data: English – Name: ISSN Label: ISSN Group: ISSN Data: 09410643 – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: http://hdl.handle.net/11615/73205 – Name: DOI Label: DOI Group: ID Data: 10.1007/s00521-020-05189-8 – Name: URL Label: Availability Group: URL Data: http://hdl.handle.net/11615/73205<br />https://doi.org/10.1007/s00521-020-05189-8 – Name: AN Label: Accession Number Group: ID Data: edsbas.52632D48 |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.52632D48 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1007/s00521-020-05189-8 Languages: – Text: English Subjects: – SubjectFull: Anomaly detection Type: general – SubjectFull: Blockchain Type: general – SubjectFull: Computer systems programming Type: general – SubjectFull: Deep neural networks Type: general – SubjectFull: Industrial internet of things (IIoT) Type: general – SubjectFull: Industrial research Type: general – SubjectFull: Industry 4.0 Type: general – SubjectFull: Network architecture Type: general – SubjectFull: Network security Type: general – SubjectFull: Archiving systems Type: general – SubjectFull: Changing environment Type: general – SubjectFull: Distributed platforms Type: general – SubjectFull: Intelligent solutions Type: general – SubjectFull: Network communications Type: general – SubjectFull: Operating parameters Type: general – SubjectFull: Security Architecture Type: general – SubjectFull: Structural elements Type: general – SubjectFull: Deep learning Type: general – SubjectFull: Springer Science and Business Media Deutschland GmbH Type: general Titles: – TitleFull: Anomaly detection via blockchained deep learning smart contracts in industry 4.0 Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Demertzis K. – PersonEntity: Name: NameFull: Iliadis L. – PersonEntity: Name: NameFull: Tziritas N. – PersonEntity: Name: NameFull: Kikiras P. IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2020 Identifiers: – Type: issn-print Value: 09410643 – Type: issn-locals Value: edsbas Titles: – TitleFull: Neural Computing and Applications ; https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088317750&doi=10.1007%2fs00521-020-05189-8&partnerID=40&md5=617ad36ac03a642add4bec4d69f1c6f3 Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science