Topology Optimization of Chip Inductor Using Density Method

Gespeichert in:
Bibliographische Detailangaben
Titel: Topology Optimization of Chip Inductor Using Density Method
Autoren: Yin, Shuli, Igarashi, Hajime, Clenet, Stephane
Weitere Verfasser: Xi'an Jiaotong University (Xjtu), Hokkaido University Sapporo, Japan, Laboratoire d’Électrotechnique et d’Électronique de Puissance - ULR 2697 (L2EP), Centrale Lille-Université de Lille-Arts et Métiers Sciences et Technologies-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), National Natural Science Foundation of China Grant 52507019
Quelle: ISSN: 1941-0069 ; IEEE Transactions on Magnetics ; https://hal.science/hal-05401068 ; IEEE Transactions on Magnetics, 2025, 6p. ⟨10.1109/tmag.2025.3628624⟩.
Verlagsinformationen: CCSD
Publikationsjahr: 2025
Bestand: LillOA (HAL Lille Open Archive, Université de Lille)
Schlagwörter: adjoint variable method, density-based FEM, eddy current, field-circuit coupling, [SPI]Engineering Sciences [physics]
Beschreibung: International audience ; This paper proposes a novel methodology of the topology optimization method considering eddy current effects. The method is applied on chip inductors modelled by the Finite Element Method (FEM). Aiming to meet a specified inductance value while minimizing eddy current losses, we employ a density-based approach to construct a continuous material distribution. The derivative of the objective function with respect to the material distribution is obtained using the adjoint variable method, then the material layout is iteratively updated via the L-BFGS-B algorithm. The proposed framework is validated on both single-turn and multi-turn inductor structures, achieving designs that satisfy the target performance within a limited number of iterations. A key innovation of this work lies in the integration of field-circuit coupling into the topology optimization framework, enabling the analysis of inductors under complex coil configurations involving both series and parallel connections. Additionally, we present an original derivation of the sensitivity formulation associated with the inductance value ensuring that the optimized inductance meets the design specification.
Publikationsart: article in journal/newspaper
Sprache: English
DOI: 10.1109/tmag.2025.3628624
Verfügbarkeit: https://hal.science/hal-05401068
https://hal.science/hal-05401068v1/document
https://hal.science/hal-05401068v1/file/L2EP_IEEE_2025_CLENET.pdf
https://doi.org/10.1109/tmag.2025.3628624
Dokumentencode: edsbas.51C775CC
Datenbank: BASE
Beschreibung
Abstract:International audience ; This paper proposes a novel methodology of the topology optimization method considering eddy current effects. The method is applied on chip inductors modelled by the Finite Element Method (FEM). Aiming to meet a specified inductance value while minimizing eddy current losses, we employ a density-based approach to construct a continuous material distribution. The derivative of the objective function with respect to the material distribution is obtained using the adjoint variable method, then the material layout is iteratively updated via the L-BFGS-B algorithm. The proposed framework is validated on both single-turn and multi-turn inductor structures, achieving designs that satisfy the target performance within a limited number of iterations. A key innovation of this work lies in the integration of field-circuit coupling into the topology optimization framework, enabling the analysis of inductors under complex coil configurations involving both series and parallel connections. Additionally, we present an original derivation of the sensitivity formulation associated with the inductance value ensuring that the optimized inductance meets the design specification.
DOI:10.1109/tmag.2025.3628624