A New Efficient Threshold Ring Signature Scheme Based on Coding Theory
Saved in:
| Title: | A New Efficient Threshold Ring Signature Scheme Based on Coding Theory |
|---|---|
| Authors: | Aguilar Melchor, Carlos, Cayrel, Pierre-Louis, Gaborit, Philippe, Laguillaumie, Fabien |
| Contributors: | DMI (XLIM-DMI), XLIM (XLIM), Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)-Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS), Center for Advanced Security Research Darmstadt Darmstadt (CASED), Technische Universität Darmstadt - Technical University of Darmstadt (TU Darmstadt), Equipe AMACC - Laboratoire GREYC - UMR6072, Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS) |
| Source: | ISSN: 0018-9448 ; IEEE Transactions on Information Theory ; https://hal.science/hal-01083807 ; IEEE Transactions on Information Theory, 2011, pp.4833-4842. ⟨10.1007/978-3-540-88403-3_1⟩. |
| Publisher Information: | CCSD Institute of Electrical and Electronics Engineers |
| Publication Year: | 2011 |
| Collection: | Université de Limoges: HAL |
| Subject Terms: | Threshold ring signature, code-based cryptography, Stern's scheme, syndrome decoding, [INFO]Computer Science [cs], [INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR] |
| Description: | International audience ; —Ring signatures were introduced by Rivest, Shamir and Tauman in 2001 [32]. These sig-natures allow a signer to anonymously authenticate a message on behalf of a group of his choice. This concept was then extended by Bresson, Stern and Szydlo into -out-of-(threshold) ring signatures in 2002 [9]. We propose in this article a generalization of Stern's code based identification (and signature) scheme [36] to design a practical -out-of-threshold ring signature scheme. The size of the resulting signatures is in () and does not depend on , contrary to most of the existing protocols. Our scheme is existentially unforge-able under a chosen message attack in the random oracle model assuming the hardness of the minimum distance problem, is unconditionally source hiding, has a very short public key and has an overall complexity in (). This protocol is the first efficient code-based ring signature scheme and the first code-based thresh-old ring signature scheme. Moreover it has a better complexity than number-theory based schemes which have a complexity in (). This paper is an extended version of [2] with complete proofs and definitions. |
| Document Type: | article in journal/newspaper |
| Language: | English |
| DOI: | 10.1007/978-3-540-88403-3_1 |
| Availability: | https://hal.science/hal-01083807 https://hal.science/hal-01083807v1/document https://hal.science/hal-01083807v1/file/RIACL-AGUILARMELCHOR-2011-1.pdf https://doi.org/10.1007/978-3-540-88403-3_1 |
| Rights: | info:eu-repo/semantics/OpenAccess |
| Accession Number: | edsbas.51B6D26F |
| Database: | BASE |
| Abstract: | International audience ; —Ring signatures were introduced by Rivest, Shamir and Tauman in 2001 [32]. These sig-natures allow a signer to anonymously authenticate a message on behalf of a group of his choice. This concept was then extended by Bresson, Stern and Szydlo into -out-of-(threshold) ring signatures in 2002 [9]. We propose in this article a generalization of Stern's code based identification (and signature) scheme [36] to design a practical -out-of-threshold ring signature scheme. The size of the resulting signatures is in () and does not depend on , contrary to most of the existing protocols. Our scheme is existentially unforge-able under a chosen message attack in the random oracle model assuming the hardness of the minimum distance problem, is unconditionally source hiding, has a very short public key and has an overall complexity in (). This protocol is the first efficient code-based ring signature scheme and the first code-based thresh-old ring signature scheme. Moreover it has a better complexity than number-theory based schemes which have a complexity in (). This paper is an extended version of [2] with complete proofs and definitions. |
|---|---|
| DOI: | 10.1007/978-3-540-88403-3_1 |
Nájsť tento článok vo Web of Science