Uniqueness of solutions in multivariate Chebyshev approximation problems

Uloženo v:
Podrobná bibliografie
Název: Uniqueness of solutions in multivariate Chebyshev approximation problems
Autoři: Vera Roshchina, Nadezda Sukhorukova, Julien Ugon
Rok vydání: 2024
Témata: Mathematical sciences, Applied mathematics, Numerical and computational mathematics, Pure mathematics, ALGORITHM, Chebyshev approximation, Mathematics, Applied, Multivariate polynomial approximation, Operations Research & Management Science, Physical Sciences, Science & Technology, Technology, Uniqueness of solutions
Popis: We study the solution set to multivariate Chebyshev approximation problem, focussing on the ill-posed case when the uniqueness of solutions can not be established via strict polynomial separation. We obtain an upper bound on the dimension of the solution set and show that nonuniqueness is generic for ill-posed problems on discrete domains. Moreover, given a prescribed set of points of minimal and maximal deviation we construct a function for which the dimension of the set of best approximating polynomials is maximal for any choice of domain. We also present several examples that illustrate the aforementioned phenomena, demonstrate practical application of our results and propose a number of open questions.
Druh dokumentu: article in journal/newspaper
Jazyk: unknown
Relation: http://hdl.handle.net/10779/DRO/DU:24165987.v1; https://figshare.com/articles/journal_contribution/Uniqueness_of_solutions_in_multivariate_Chebyshev_approximation_problems/24165987
Dostupnost: http://hdl.handle.net/10779/DRO/DU:24165987.v1
https://figshare.com/articles/journal_contribution/Uniqueness_of_solutions_in_multivariate_Chebyshev_approximation_problems/24165987
Rights: All Rights Reserved
Přístupové číslo: edsbas.5113E271
Databáze: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: http://hdl.handle.net/10779/DRO/DU:24165987.v1#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Roshchina%20V
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.5113E271
RelevancyScore: 899
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 898.605590820313
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Uniqueness of solutions in multivariate Chebyshev approximation problems
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Vera+Roshchina%22">Vera Roshchina</searchLink><br /><searchLink fieldCode="AR" term="%22Nadezda+Sukhorukova%22">Nadezda Sukhorukova</searchLink><br /><searchLink fieldCode="AR" term="%22Julien+Ugon%22">Julien Ugon</searchLink>
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2024
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Mathematical+sciences%22">Mathematical sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Applied+mathematics%22">Applied mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22Numerical+and+computational+mathematics%22">Numerical and computational mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22Pure+mathematics%22">Pure mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22ALGORITHM%22">ALGORITHM</searchLink><br /><searchLink fieldCode="DE" term="%22Chebyshev+approximation%22">Chebyshev approximation</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematics%22">Mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22Applied%22">Applied</searchLink><br /><searchLink fieldCode="DE" term="%22Multivariate+polynomial+approximation%22">Multivariate polynomial approximation</searchLink><br /><searchLink fieldCode="DE" term="%22Operations+Research+%26+Management+Science%22">Operations Research & Management Science</searchLink><br /><searchLink fieldCode="DE" term="%22Physical+Sciences%22">Physical Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Science+%26+Technology%22">Science & Technology</searchLink><br /><searchLink fieldCode="DE" term="%22Technology%22">Technology</searchLink><br /><searchLink fieldCode="DE" term="%22Uniqueness+of+solutions%22">Uniqueness of solutions</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: We study the solution set to multivariate Chebyshev approximation problem, focussing on the ill-posed case when the uniqueness of solutions can not be established via strict polynomial separation. We obtain an upper bound on the dimension of the solution set and show that nonuniqueness is generic for ill-posed problems on discrete domains. Moreover, given a prescribed set of points of minimal and maximal deviation we construct a function for which the dimension of the set of best approximating polynomials is maximal for any choice of domain. We also present several examples that illustrate the aforementioned phenomena, demonstrate practical application of our results and propose a number of open questions.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article in journal/newspaper
– Name: Language
  Label: Language
  Group: Lang
  Data: unknown
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: http://hdl.handle.net/10779/DRO/DU:24165987.v1; https://figshare.com/articles/journal_contribution/Uniqueness_of_solutions_in_multivariate_Chebyshev_approximation_problems/24165987
– Name: URL
  Label: Availability
  Group: URL
  Data: http://hdl.handle.net/10779/DRO/DU:24165987.v1<br />https://figshare.com/articles/journal_contribution/Uniqueness_of_solutions_in_multivariate_Chebyshev_approximation_problems/24165987
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: All Rights Reserved
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.5113E271
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.5113E271
RecordInfo BibRecord:
  BibEntity:
    Languages:
      – Text: unknown
    Subjects:
      – SubjectFull: Mathematical sciences
        Type: general
      – SubjectFull: Applied mathematics
        Type: general
      – SubjectFull: Numerical and computational mathematics
        Type: general
      – SubjectFull: Pure mathematics
        Type: general
      – SubjectFull: ALGORITHM
        Type: general
      – SubjectFull: Chebyshev approximation
        Type: general
      – SubjectFull: Mathematics
        Type: general
      – SubjectFull: Applied
        Type: general
      – SubjectFull: Multivariate polynomial approximation
        Type: general
      – SubjectFull: Operations Research & Management Science
        Type: general
      – SubjectFull: Physical Sciences
        Type: general
      – SubjectFull: Science & Technology
        Type: general
      – SubjectFull: Technology
        Type: general
      – SubjectFull: Uniqueness of solutions
        Type: general
    Titles:
      – TitleFull: Uniqueness of solutions in multivariate Chebyshev approximation problems
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Vera Roshchina
      – PersonEntity:
          Name:
            NameFull: Nadezda Sukhorukova
      – PersonEntity:
          Name:
            NameFull: Julien Ugon
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2024
          Identifiers:
            – Type: issn-locals
              Value: edsbas
ResultId 1