Uniqueness of solutions in multivariate Chebyshev approximation problems
Uloženo v:
| Název: | Uniqueness of solutions in multivariate Chebyshev approximation problems |
|---|---|
| Autoři: | Vera Roshchina, Nadezda Sukhorukova, Julien Ugon |
| Rok vydání: | 2024 |
| Témata: | Mathematical sciences, Applied mathematics, Numerical and computational mathematics, Pure mathematics, ALGORITHM, Chebyshev approximation, Mathematics, Applied, Multivariate polynomial approximation, Operations Research & Management Science, Physical Sciences, Science & Technology, Technology, Uniqueness of solutions |
| Popis: | We study the solution set to multivariate Chebyshev approximation problem, focussing on the ill-posed case when the uniqueness of solutions can not be established via strict polynomial separation. We obtain an upper bound on the dimension of the solution set and show that nonuniqueness is generic for ill-posed problems on discrete domains. Moreover, given a prescribed set of points of minimal and maximal deviation we construct a function for which the dimension of the set of best approximating polynomials is maximal for any choice of domain. We also present several examples that illustrate the aforementioned phenomena, demonstrate practical application of our results and propose a number of open questions. |
| Druh dokumentu: | article in journal/newspaper |
| Jazyk: | unknown |
| Relation: | http://hdl.handle.net/10779/DRO/DU:24165987.v1; https://figshare.com/articles/journal_contribution/Uniqueness_of_solutions_in_multivariate_Chebyshev_approximation_problems/24165987 |
| Dostupnost: | http://hdl.handle.net/10779/DRO/DU:24165987.v1 https://figshare.com/articles/journal_contribution/Uniqueness_of_solutions_in_multivariate_Chebyshev_approximation_problems/24165987 |
| Rights: | All Rights Reserved |
| Přístupové číslo: | edsbas.5113E271 |
| Databáze: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: http://hdl.handle.net/10779/DRO/DU:24165987.v1# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Roshchina%20V Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.5113E271 RelevancyScore: 899 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 898.605590820313 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Uniqueness of solutions in multivariate Chebyshev approximation problems – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Vera+Roshchina%22">Vera Roshchina</searchLink><br /><searchLink fieldCode="AR" term="%22Nadezda+Sukhorukova%22">Nadezda Sukhorukova</searchLink><br /><searchLink fieldCode="AR" term="%22Julien+Ugon%22">Julien Ugon</searchLink> – Name: DatePubCY Label: Publication Year Group: Date Data: 2024 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Mathematical+sciences%22">Mathematical sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Applied+mathematics%22">Applied mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22Numerical+and+computational+mathematics%22">Numerical and computational mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22Pure+mathematics%22">Pure mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22ALGORITHM%22">ALGORITHM</searchLink><br /><searchLink fieldCode="DE" term="%22Chebyshev+approximation%22">Chebyshev approximation</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematics%22">Mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22Applied%22">Applied</searchLink><br /><searchLink fieldCode="DE" term="%22Multivariate+polynomial+approximation%22">Multivariate polynomial approximation</searchLink><br /><searchLink fieldCode="DE" term="%22Operations+Research+%26+Management+Science%22">Operations Research & Management Science</searchLink><br /><searchLink fieldCode="DE" term="%22Physical+Sciences%22">Physical Sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Science+%26+Technology%22">Science & Technology</searchLink><br /><searchLink fieldCode="DE" term="%22Technology%22">Technology</searchLink><br /><searchLink fieldCode="DE" term="%22Uniqueness+of+solutions%22">Uniqueness of solutions</searchLink> – Name: Abstract Label: Description Group: Ab Data: We study the solution set to multivariate Chebyshev approximation problem, focussing on the ill-posed case when the uniqueness of solutions can not be established via strict polynomial separation. We obtain an upper bound on the dimension of the solution set and show that nonuniqueness is generic for ill-posed problems on discrete domains. Moreover, given a prescribed set of points of minimal and maximal deviation we construct a function for which the dimension of the set of best approximating polynomials is maximal for any choice of domain. We also present several examples that illustrate the aforementioned phenomena, demonstrate practical application of our results and propose a number of open questions. – Name: TypeDocument Label: Document Type Group: TypDoc Data: article in journal/newspaper – Name: Language Label: Language Group: Lang Data: unknown – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: http://hdl.handle.net/10779/DRO/DU:24165987.v1; https://figshare.com/articles/journal_contribution/Uniqueness_of_solutions_in_multivariate_Chebyshev_approximation_problems/24165987 – Name: URL Label: Availability Group: URL Data: http://hdl.handle.net/10779/DRO/DU:24165987.v1<br />https://figshare.com/articles/journal_contribution/Uniqueness_of_solutions_in_multivariate_Chebyshev_approximation_problems/24165987 – Name: Copyright Label: Rights Group: Cpyrght Data: All Rights Reserved – Name: AN Label: Accession Number Group: ID Data: edsbas.5113E271 |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.5113E271 |
| RecordInfo | BibRecord: BibEntity: Languages: – Text: unknown Subjects: – SubjectFull: Mathematical sciences Type: general – SubjectFull: Applied mathematics Type: general – SubjectFull: Numerical and computational mathematics Type: general – SubjectFull: Pure mathematics Type: general – SubjectFull: ALGORITHM Type: general – SubjectFull: Chebyshev approximation Type: general – SubjectFull: Mathematics Type: general – SubjectFull: Applied Type: general – SubjectFull: Multivariate polynomial approximation Type: general – SubjectFull: Operations Research & Management Science Type: general – SubjectFull: Physical Sciences Type: general – SubjectFull: Science & Technology Type: general – SubjectFull: Technology Type: general – SubjectFull: Uniqueness of solutions Type: general Titles: – TitleFull: Uniqueness of solutions in multivariate Chebyshev approximation problems Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Vera Roshchina – PersonEntity: Name: NameFull: Nadezda Sukhorukova – PersonEntity: Name: NameFull: Julien Ugon IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2024 Identifiers: – Type: issn-locals Value: edsbas |
| ResultId | 1 |
Nájsť tento článok vo Web of Science