CROC: Convex Resolution Of Centroidal dynamics trajectories to provide a feasibility criterion for the multi contact planning problem
Uloženo v:
| Název: | CROC: Convex Resolution Of Centroidal dynamics trajectories to provide a feasibility criterion for the multi contact planning problem |
|---|---|
| Autoři: | Fernbach, Pierre, Tonneau, Steve, Taïx, Michel |
| Přispěvatelé: | Équipe Mouvement des Systèmes Anthropomorphes (LAAS-GEPETTO), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT) |
| Zdroj: | 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems https://hal.science/hal-01726155 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct 2018, Madrid, Spain. 7p., ⟨10.1109/IROS.2018.8593888⟩ |
| Informace o vydavateli: | CCSD |
| Rok vydání: | 2018 |
| Sbírka: | Université Toulouse III - Paul Sabatier: HAL-UPS |
| Témata: | ACM: I.: Computing Methodologies/I.2: ARTIFICIAL INTELLIGENCE/I.2.9: Robotics, ACM: G.: Mathematics of Computing/G.1: NUMERICAL ANALYSIS/G.1.6: Optimization, ACM: I.: Computing Methodologies/I.3: COMPUTER GRAPHICS/I.3.7: Three-Dimensional Graphics and Realism/I.3.7.0: Animation, [INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO] |
| Geografické téma: | Spain |
| Time: | Madrid, Spain |
| Popis: | International audience ; We present a novel method for computing centroidal dynamic trajectories in multi-contact planning context. With dynamic motion it is necessary to respect kinematic and dynamic constraints during the contact planning step. Verifying the feasibility of a transition between contacts increase the success rate of the motion generation along the planned contacts. Our approach is based on a conservative but convex reformulation of the problem where we represent the center of mass trajectory as a Bezier curve, with control points constrained by the initial and final states and one free control point. Thanks to the convexity of this formulation, we can solve it efficiently with a Linear Program of low dimension. We use this LP as a feasibility criterion to test the contact transition candidates during multi-contact planning. By incorporating this criterion in an existing sampling-based contact planner, we are able to produce more robust contact sequences. We illustrate this application on various multi-contact scenarios. We also show that we can compute valuable initial guess, used to warm-start non-linear solvers for motion generation methods. This method could also be used for the 0 and 1-Step capturability problem. |
| Druh dokumentu: | conference object |
| Jazyk: | English |
| DOI: | 10.1109/IROS.2018.8593888 |
| Dostupnost: | https://hal.science/hal-01726155 https://hal.science/hal-01726155v3/document https://hal.science/hal-01726155v3/file/CROC_iros18.pdf https://doi.org/10.1109/IROS.2018.8593888 |
| Rights: | info:eu-repo/semantics/OpenAccess |
| Přístupové číslo: | edsbas.4C02DF3E |
| Databáze: | BASE |
| Abstrakt: | International audience ; We present a novel method for computing centroidal dynamic trajectories in multi-contact planning context. With dynamic motion it is necessary to respect kinematic and dynamic constraints during the contact planning step. Verifying the feasibility of a transition between contacts increase the success rate of the motion generation along the planned contacts. Our approach is based on a conservative but convex reformulation of the problem where we represent the center of mass trajectory as a Bezier curve, with control points constrained by the initial and final states and one free control point. Thanks to the convexity of this formulation, we can solve it efficiently with a Linear Program of low dimension. We use this LP as a feasibility criterion to test the contact transition candidates during multi-contact planning. By incorporating this criterion in an existing sampling-based contact planner, we are able to produce more robust contact sequences. We illustrate this application on various multi-contact scenarios. We also show that we can compute valuable initial guess, used to warm-start non-linear solvers for motion generation methods. This method could also be used for the 0 and 1-Step capturability problem. |
|---|---|
| DOI: | 10.1109/IROS.2018.8593888 |
Nájsť tento článok vo Web of Science