Bounds for the estimation of matrix-valued parameters of a Gaussian random process

Gespeichert in:
Bibliographische Detailangaben
Titel: Bounds for the estimation of matrix-valued parameters of a Gaussian random process
Autoren: Leon Arencibia, Lorena, Wendt, Herwig, Tourneret, Jean-Yves
Weitere Verfasser: CoMputational imagINg anD viSion (IRIT-MINDS), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Institut National Polytechnique (Toulouse) (Toulouse INP), Centre National de la Recherche Scientifique (CNRS), ANR-18-CE45-0007,MUTATION,Analyse multifractale multidimensionnelle : Théorie et applications en imagerie échographique du cancer de pancréas(2018)
Quelle: ISSN: 0165-1684.
Verlagsinformationen: CCSD
Elsevier
Publikationsjahr: 2023
Bestand: Université Toulouse III - Paul Sabatier: HAL-UPS
Schlagwörter: Bayesian Cramér-Rao lower bound, Wishart random matrices, Multivariate multifractal analysis, [INFO]Computer Science [cs]
Beschreibung: International audience ; This paper derives and studies Bayesian Cramér-Rao lower bounds for the mean squared error of covariance matrices that are structured as weighted sums of symmetric positive definite matrices associated with a circularly-symmetric Gaussian statistical model. This model naturally appears in a number of important applications, including multivariate multifractal analysis and vector-valued additive Gaussian processes. As an intermediary result, we derive a novel expression for the expectation of compositions of Wishart random matrices. We provide extensive numerical simulation results for analyzing the derived bounds and their properties, and illustrate their use for the multifractal analysis of bivariate time series.
Publikationsart: article in journal/newspaper
Sprache: English
DOI: 10.1016/j.sigpro.2023.109106
Verfügbarkeit: https://hal.science/hal-04254235
https://hal.science/hal-04254235v1/document
https://hal.science/hal-04254235v1/file/1-s2.0-S0165168423001809-main.pdf
https://doi.org/10.1016/j.sigpro.2023.109106
Rights: http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
Dokumentencode: edsbas.4ADF4FB0
Datenbank: BASE
Beschreibung
Abstract:International audience ; This paper derives and studies Bayesian Cramér-Rao lower bounds for the mean squared error of covariance matrices that are structured as weighted sums of symmetric positive definite matrices associated with a circularly-symmetric Gaussian statistical model. This model naturally appears in a number of important applications, including multivariate multifractal analysis and vector-valued additive Gaussian processes. As an intermediary result, we derive a novel expression for the expectation of compositions of Wishart random matrices. We provide extensive numerical simulation results for analyzing the derived bounds and their properties, and illustrate their use for the multifractal analysis of bivariate time series.
DOI:10.1016/j.sigpro.2023.109106