Bounds for the estimation of matrix-valued parameters of a Gaussian random process

Uloženo v:
Podrobná bibliografie
Název: Bounds for the estimation of matrix-valued parameters of a Gaussian random process
Autoři: Leon Arencibia, Lorena, Wendt, Herwig, Tourneret, Jean-Yves
Přispěvatelé: CoMputational imagINg anD viSion (IRIT-MINDS), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Institut National Polytechnique (Toulouse) (Toulouse INP), Centre National de la Recherche Scientifique (CNRS), ANR-18-CE45-0007,MUTATION,Analyse multifractale multidimensionnelle : Théorie et applications en imagerie échographique du cancer de pancréas(2018)
Zdroj: ISSN: 0165-1684.
Informace o vydavateli: CCSD
Elsevier
Rok vydání: 2023
Sbírka: Université Toulouse III - Paul Sabatier: HAL-UPS
Témata: Bayesian Cramér-Rao lower bound, Wishart random matrices, Multivariate multifractal analysis, [INFO]Computer Science [cs]
Popis: International audience ; This paper derives and studies Bayesian Cramér-Rao lower bounds for the mean squared error of covariance matrices that are structured as weighted sums of symmetric positive definite matrices associated with a circularly-symmetric Gaussian statistical model. This model naturally appears in a number of important applications, including multivariate multifractal analysis and vector-valued additive Gaussian processes. As an intermediary result, we derive a novel expression for the expectation of compositions of Wishart random matrices. We provide extensive numerical simulation results for analyzing the derived bounds and their properties, and illustrate their use for the multifractal analysis of bivariate time series.
Druh dokumentu: article in journal/newspaper
Jazyk: English
DOI: 10.1016/j.sigpro.2023.109106
Dostupnost: https://hal.science/hal-04254235
https://hal.science/hal-04254235v1/document
https://hal.science/hal-04254235v1/file/1-s2.0-S0165168423001809-main.pdf
https://doi.org/10.1016/j.sigpro.2023.109106
Rights: http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
Přístupové číslo: edsbas.4ADF4FB0
Databáze: BASE
Popis
Abstrakt:International audience ; This paper derives and studies Bayesian Cramér-Rao lower bounds for the mean squared error of covariance matrices that are structured as weighted sums of symmetric positive definite matrices associated with a circularly-symmetric Gaussian statistical model. This model naturally appears in a number of important applications, including multivariate multifractal analysis and vector-valued additive Gaussian processes. As an intermediary result, we derive a novel expression for the expectation of compositions of Wishart random matrices. We provide extensive numerical simulation results for analyzing the derived bounds and their properties, and illustrate their use for the multifractal analysis of bivariate time series.
DOI:10.1016/j.sigpro.2023.109106