Raman Spectroscopy and Improved Inception Network for Determination of FHB-Infected Wheat Kernels

Uloženo v:
Podrobná bibliografie
Název: Raman Spectroscopy and Improved Inception Network for Determination of FHB-Infected Wheat Kernels
Autoři: Mengqing Qiu, Shouguo Zheng, Le Tang, Xujin Hu, Qingshan Xu, Ling Zheng, Shizhuang Weng
Zdroj: Foods, Vol 11, Iss 578, p 578 (2022)
Informace o vydavateli: MDPI AG
Rok vydání: 2022
Sbírka: Directory of Open Access Journals: DOAJ Articles
Témata: Raman spectroscopy, Fusarium head blight (FHB), wheat kernels, inception network, residual module, channel attention module, Chemical technology, TP1-1185
Popis: Detection of infected kernels is important for Fusarium head blight (FHB) prevention and product quality assurance in wheat. In this study, Raman spectroscopy (RS) and deep learning networks were used for the determination of FHB-infected wheat kernels. First, the RS spectra of healthy, mild, and severe infection kernels were measured and spectral changes and band attribution were analyzed. Then, the Inception network was improved by residual and channel attention modules to develop the recognition models of FHB infection. The Inception–attention network produced the best determination with accuracies in training set, validation set, and prediction set of 97.13%, 91.49%, and 93.62%, among all models. The average feature map of the channel clarified the important information in feature extraction, itself required to clarify the decision-making strategy. Overall, RS and the Inception–attention network provide a noninvasive, rapid, and accurate determination of FHB-infected wheat kernels and are expected to be applied to other pathogens or diseases in various crops.
Druh dokumentu: article in journal/newspaper
Jazyk: English
Relation: https://www.mdpi.com/2304-8158/11/4/578; https://doaj.org/toc/2304-8158; https://doaj.org/article/0f2d4e8331b94b48ac6176dd739afe48
DOI: 10.3390/foods11040578
Dostupnost: https://doi.org/10.3390/foods11040578
https://doaj.org/article/0f2d4e8331b94b48ac6176dd739afe48
Přístupové číslo: edsbas.3EC5B3AB
Databáze: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.3390/foods11040578#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Qiu%20M
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.3EC5B3AB
RelevancyScore: 925
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 925.000732421875
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Raman Spectroscopy and Improved Inception Network for Determination of FHB-Infected Wheat Kernels
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Mengqing+Qiu%22">Mengqing Qiu</searchLink><br /><searchLink fieldCode="AR" term="%22Shouguo+Zheng%22">Shouguo Zheng</searchLink><br /><searchLink fieldCode="AR" term="%22Le+Tang%22">Le Tang</searchLink><br /><searchLink fieldCode="AR" term="%22Xujin+Hu%22">Xujin Hu</searchLink><br /><searchLink fieldCode="AR" term="%22Qingshan+Xu%22">Qingshan Xu</searchLink><br /><searchLink fieldCode="AR" term="%22Ling+Zheng%22">Ling Zheng</searchLink><br /><searchLink fieldCode="AR" term="%22Shizhuang+Weng%22">Shizhuang Weng</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Foods, Vol 11, Iss 578, p 578 (2022)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: MDPI AG
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2022
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Directory of Open Access Journals: DOAJ Articles
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Raman+spectroscopy%22">Raman spectroscopy</searchLink><br /><searchLink fieldCode="DE" term="%22Fusarium+head+blight+%28FHB%29%22">Fusarium head blight (FHB)</searchLink><br /><searchLink fieldCode="DE" term="%22wheat+kernels%22">wheat kernels</searchLink><br /><searchLink fieldCode="DE" term="%22inception+network%22">inception network</searchLink><br /><searchLink fieldCode="DE" term="%22residual+module%22">residual module</searchLink><br /><searchLink fieldCode="DE" term="%22channel+attention+module%22">channel attention module</searchLink><br /><searchLink fieldCode="DE" term="%22Chemical+technology%22">Chemical technology</searchLink><br /><searchLink fieldCode="DE" term="%22TP1-1185%22">TP1-1185</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Detection of infected kernels is important for Fusarium head blight (FHB) prevention and product quality assurance in wheat. In this study, Raman spectroscopy (RS) and deep learning networks were used for the determination of FHB-infected wheat kernels. First, the RS spectra of healthy, mild, and severe infection kernels were measured and spectral changes and band attribution were analyzed. Then, the Inception network was improved by residual and channel attention modules to develop the recognition models of FHB infection. The Inception–attention network produced the best determination with accuracies in training set, validation set, and prediction set of 97.13%, 91.49%, and 93.62%, among all models. The average feature map of the channel clarified the important information in feature extraction, itself required to clarify the decision-making strategy. Overall, RS and the Inception–attention network provide a noninvasive, rapid, and accurate determination of FHB-infected wheat kernels and are expected to be applied to other pathogens or diseases in various crops.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article in journal/newspaper
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://www.mdpi.com/2304-8158/11/4/578; https://doaj.org/toc/2304-8158; https://doaj.org/article/0f2d4e8331b94b48ac6176dd739afe48
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.3390/foods11040578
– Name: URL
  Label: Availability
  Group: URL
  Data: https://doi.org/10.3390/foods11040578<br />https://doaj.org/article/0f2d4e8331b94b48ac6176dd739afe48
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.3EC5B3AB
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.3EC5B3AB
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.3390/foods11040578
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Raman spectroscopy
        Type: general
      – SubjectFull: Fusarium head blight (FHB)
        Type: general
      – SubjectFull: wheat kernels
        Type: general
      – SubjectFull: inception network
        Type: general
      – SubjectFull: residual module
        Type: general
      – SubjectFull: channel attention module
        Type: general
      – SubjectFull: Chemical technology
        Type: general
      – SubjectFull: TP1-1185
        Type: general
    Titles:
      – TitleFull: Raman Spectroscopy and Improved Inception Network for Determination of FHB-Infected Wheat Kernels
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Mengqing Qiu
      – PersonEntity:
          Name:
            NameFull: Shouguo Zheng
      – PersonEntity:
          Name:
            NameFull: Le Tang
      – PersonEntity:
          Name:
            NameFull: Xujin Hu
      – PersonEntity:
          Name:
            NameFull: Qingshan Xu
      – PersonEntity:
          Name:
            NameFull: Ling Zheng
      – PersonEntity:
          Name:
            NameFull: Shizhuang Weng
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2022
          Identifiers:
            – Type: issn-locals
              Value: edsbas
            – Type: issn-locals
              Value: edsbas.oa
          Titles:
            – TitleFull: Foods, Vol 11, Iss 578, p 578 (2022
              Type: main
ResultId 1