MATHICSE Technical Report : Multi-index stochastic collocation for random PDEs

Saved in:
Bibliographic Details
Title: MATHICSE Technical Report : Multi-index stochastic collocation for random PDEs
Authors: Haji Ali, Abdul Lateef, Nobile, Fabio, Tamellini, Lorenzo, Tempone, Raùl
Contributors: MATHICSE-Group
Publisher Information: MATHICSE
Écublens
Publication Year: 2019
Collection: Ecole Polytechnique Fédérale Lausanne (EPFL): Infoscience
Subject Terms: Uncertainty Quantiffication, Random PDEs, Multivariate approximation, Sparse grids, Stochastic Collocation methods, Multilevel methods, Combination technique
Description: In this work we introduce the Multi-Index Stochastic Collocation method (MISC) for computing statistics of the solution of a PDE with random data. MISC is a combination technique based on mixed differences of spatial approximations and quadratures over the space of random data. We propose an optimization procedure to select the most eective mixed differences to include in the MISC estimator: such optimization is a crucial step and allows us to build a method that, provided with sufficient solution regularity, is potentially more eective than other multi-level collocation methods already available in literature. We then provide a complexity analysis that assumes decay rates of product type for such mixed differences, showing that in the optimal case the convergence rate of MISC is only dictated by the convergence of the deterministic solver applied to a one dimensional problem. We show the effectiveness of MISC with some computational tests, comparing it with other related methods available in the literature, such as the Multi- Index and Multilevel Monte Carlo, Multilevel Stochastic Collocation, Quasi Optimal Stochastic Collocation and Sparse Composite Collocation methods. ; CSQI ; MATHICSE Technical Report Nr. 22.2015 September 2015
Document Type: report
Language: unknown
Relation: https://infoscience.epfl.ch/record/263551/files/22.2015_AH-FN-LT-RT.pdf; #PLACEHOLDER_PARENT_METADATA_VALUE#; https://infoscience.epfl.ch/handle/20.500.14299/154076
DOI: 10.5075/epfl-MATHICSE-263551
Availability: https://doi.org/10.5075/epfl-MATHICSE-263551
https://infoscience.epfl.ch/handle/20.500.14299/154076
https://hdl.handle.net/20.500.14299/154076
Accession Number: edsbas.3BAC183D
Database: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.5075/epfl-MATHICSE-263551#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Ali%20H
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.3BAC183D
RelevancyScore: 808
AccessLevel: 3
PubType: Report
PubTypeId: report
PreciseRelevancyScore: 807.664306640625
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: MATHICSE Technical Report : Multi-index stochastic collocation for random PDEs
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Haji+Ali%2C+Abdul+Lateef%22">Haji Ali, Abdul Lateef</searchLink><br /><searchLink fieldCode="AR" term="%22Nobile%2C+Fabio%22">Nobile, Fabio</searchLink><br /><searchLink fieldCode="AR" term="%22Tamellini%2C+Lorenzo%22">Tamellini, Lorenzo</searchLink><br /><searchLink fieldCode="AR" term="%22Tempone%2C+Raùl%22">Tempone, Raùl</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: MATHICSE-Group
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: MATHICSE<br />Écublens
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2019
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Ecole Polytechnique Fédérale Lausanne (EPFL): Infoscience
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Uncertainty+Quantiffication%22">Uncertainty Quantiffication</searchLink><br /><searchLink fieldCode="DE" term="%22Random+PDEs%22">Random PDEs</searchLink><br /><searchLink fieldCode="DE" term="%22Multivariate+approximation%22">Multivariate approximation</searchLink><br /><searchLink fieldCode="DE" term="%22Sparse+grids%22">Sparse grids</searchLink><br /><searchLink fieldCode="DE" term="%22Stochastic+Collocation+methods%22">Stochastic Collocation methods</searchLink><br /><searchLink fieldCode="DE" term="%22Multilevel+methods%22">Multilevel methods</searchLink><br /><searchLink fieldCode="DE" term="%22Combination+technique%22">Combination technique</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: In this work we introduce the Multi-Index Stochastic Collocation method (MISC) for computing statistics of the solution of a PDE with random data. MISC is a combination technique based on mixed differences of spatial approximations and quadratures over the space of random data. We propose an optimization procedure to select the most eective mixed differences to include in the MISC estimator: such optimization is a crucial step and allows us to build a method that, provided with sufficient solution regularity, is potentially more eective than other multi-level collocation methods already available in literature. We then provide a complexity analysis that assumes decay rates of product type for such mixed differences, showing that in the optimal case the convergence rate of MISC is only dictated by the convergence of the deterministic solver applied to a one dimensional problem. We show the effectiveness of MISC with some computational tests, comparing it with other related methods available in the literature, such as the Multi- Index and Multilevel Monte Carlo, Multilevel Stochastic Collocation, Quasi Optimal Stochastic Collocation and Sparse Composite Collocation methods. ; CSQI ; MATHICSE Technical Report Nr. 22.2015 September 2015
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: report
– Name: Language
  Label: Language
  Group: Lang
  Data: unknown
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://infoscience.epfl.ch/record/263551/files/22.2015_AH-FN-LT-RT.pdf; #PLACEHOLDER_PARENT_METADATA_VALUE#; https://infoscience.epfl.ch/handle/20.500.14299/154076
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.5075/epfl-MATHICSE-263551
– Name: URL
  Label: Availability
  Group: URL
  Data: https://doi.org/10.5075/epfl-MATHICSE-263551<br />https://infoscience.epfl.ch/handle/20.500.14299/154076<br />https://hdl.handle.net/20.500.14299/154076
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.3BAC183D
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.3BAC183D
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.5075/epfl-MATHICSE-263551
    Languages:
      – Text: unknown
    Subjects:
      – SubjectFull: Uncertainty Quantiffication
        Type: general
      – SubjectFull: Random PDEs
        Type: general
      – SubjectFull: Multivariate approximation
        Type: general
      – SubjectFull: Sparse grids
        Type: general
      – SubjectFull: Stochastic Collocation methods
        Type: general
      – SubjectFull: Multilevel methods
        Type: general
      – SubjectFull: Combination technique
        Type: general
    Titles:
      – TitleFull: MATHICSE Technical Report : Multi-index stochastic collocation for random PDEs
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Haji Ali, Abdul Lateef
      – PersonEntity:
          Name:
            NameFull: Nobile, Fabio
      – PersonEntity:
          Name:
            NameFull: Tamellini, Lorenzo
      – PersonEntity:
          Name:
            NameFull: Tempone, Raùl
      – PersonEntity:
          Name:
            NameFull: MATHICSE-Group
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2019
          Identifiers:
            – Type: issn-locals
              Value: edsbas
ResultId 1