An algebraic approach to the Rank Support Learning problem
Uloženo v:
| Název: | An algebraic approach to the Rank Support Learning problem |
|---|---|
| Autoři: | Bardet, Magali, Briaud, Pierre |
| Přispěvatelé: | Equipe Combinatoire et algorithmes (LITIS - CA), Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), Université Le Havre Normandie (ULH), Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA), Cryptologie symétrique, cryptologie fondée sur les codes et information quantique (COSMIQ), Centre Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Sorbonne Université (SU), Jung Hee Cheon, Jean-Pierre Tillich, ANR-17-CE39-0007,CBCRYPT,Cryptographie basée sur les codes(2017) |
| Zdroj: | PQCrypto 2021 - Post-Quantum Cryptography 12th International Workshop ; https://inria.hal.science/hal-03158460 ; PQCrypto 2021 - Post-Quantum Cryptography 12th International Workshop, Jul 2021, Daejeon, South Korea. pp.442-462, ⟨10.1007/978-3-030-81293-5_23⟩ ; https://pqcrypto2021.kr/ |
| Informace o vydavateli: | CCSD Springer |
| Rok vydání: | 2021 |
| Témata: | Rank metric code-based cryptography, Algebraic attack, Post-quantum cryptography, [INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR] |
| Geografické téma: | Daejeon, South Korea |
| Popis: | International audience ; Rank-metric code-based cryptography relies on the hardness of decoding a random linear code in the rank metric. The Rank Support Learning problem (RSL) is a variant where an attacker has access to N decoding instances whose errors have the same support and wants to solve one of them. This problem is for instance used in the Durandal signature scheme. In this paper, we propose an algebraic attack on RSL which clearly outperforms the previous attacks to solve this problem. We build upon Bardet et al., Asiacrypt 2020, where similar techniques are used to solve MinRank and RD. However, our analysis is simpler and overall our attack relies on very elementary assumptions compared to standard Gröbner bases attacks. In particular, our results show that key recovery attacks on Durandal are more efficient than was previously thought. |
| Druh dokumentu: | conference object |
| Jazyk: | English |
| Relation: | info:eu-repo/semantics/altIdentifier/arxiv/2103.03558; ARXIV: 2103.03558 |
| DOI: | 10.1007/978-3-030-81293-5_23 |
| Dostupnost: | https://inria.hal.science/hal-03158460 https://inria.hal.science/hal-03158460v2/document https://inria.hal.science/hal-03158460v2/file/arxiv-v2.pdf https://doi.org/10.1007/978-3-030-81293-5_23 |
| Rights: | info:eu-repo/semantics/OpenAccess |
| Přístupové číslo: | edsbas.3B7448D5 |
| Databáze: | BASE |
| Abstrakt: | International audience ; Rank-metric code-based cryptography relies on the hardness of decoding a random linear code in the rank metric. The Rank Support Learning problem (RSL) is a variant where an attacker has access to N decoding instances whose errors have the same support and wants to solve one of them. This problem is for instance used in the Durandal signature scheme. In this paper, we propose an algebraic attack on RSL which clearly outperforms the previous attacks to solve this problem. We build upon Bardet et al., Asiacrypt 2020, where similar techniques are used to solve MinRank and RD. However, our analysis is simpler and overall our attack relies on very elementary assumptions compared to standard Gröbner bases attacks. In particular, our results show that key recovery attacks on Durandal are more efficient than was previously thought. |
|---|---|
| DOI: | 10.1007/978-3-030-81293-5_23 |
Nájsť tento článok vo Web of Science