Search for dark matter annihilation signals from unidentified Fermi-LAT objects with H.E.S.S

Saved in:
Bibliographic Details
Title: Search for dark matter annihilation signals from unidentified Fermi-LAT objects with H.E.S.S
Authors: Abdalla, H., Aharonian, F., Benkhali, F. Ait, Angüner, E.O., Arcaro, C., Armand, C., Armstrong, T., Ashkar, H., Backes, M., Baghmanyan, V., Barbosa Martins, V., Barnacka, A., Barnard, M., Becherini, Y., Berge, D., Bernlöhr, K., Bi, B., Böttcher, M., Boisson, C., Bolmont, J., de Bony de Lavergne, M., Breuhaus, M., Brose, R., Brun, F., Brun, P., Bryan, M., Büchele, M., Bulik, T., Bylund, T., Cangemi, F., Caroff, S., Carosi, A., Casanova, S., Chambery, P., Chand, J. Catalano T., Chandra, S., Chen, A., Cotter, G., Curyło, M., Dalgleish, H., Mbarubucyeye, J. Damascene, Davids, I.D., Davies, J., Deil, C., Devin, J., Dirson, L., Djannati-Ataï, A., Dmytriiev, A., Donath, A., Doroshenko, V., Dreyer, L., Plessis, L. Du, Duffy, C., Dyks, J., Egberts, K., Eichhorn, F., Einecke, S., Emery, G., Ernenwein, J.-P., Feijen, K., Fegan, S., Fiasson, A., de Clairfontaine, G. Fichet, Fontaine, G., Funk, S., Füßling, M., Gabici, S., Gallant, Y.A., Giavitto, G., Giunti, L., Glawion, D., Glicenstein, J.F., Gottschall, D., Grondin, M.-H., Hattingh, S., Hahn, J., Haupt, M., Hermann, G., Hinton, J.A., Hofmann, W., Hoischen, C., Holch, T.L., Holler, M., Hörbe, M., Horns, D., Huang, Z., Huber, D., Jamrozy, M., Jankowsky, D., Jankowsky, F., Jardin-Blicq, A., Joshi, V., Jung-Richardt, I., Kasai, E., Katarzyński, K., Katz, U., Khangulyan, D., Khélifi, B., Klepser, S., Kluźniak, W., Komin, Nu., Konno, R., Kosack, K., Kostunin, D., Kreter, M., Mezek, G. Kukec, Kundu, A., Lamanna, G., Lemière, A., Lemoine-Goumard, M., Lenain, J.-P., Leuschner, F., Levy, C., Lohse, T., Luashvili, A., Lypova, I., Mackey, J., Majumdar, J., Malyshev, D., Marandon, V., Marchegiani, P., Marcowith, A., Mares, A., Martí-Devesa, G., Marx, R., Maurin, G., Meintjes, P.J., Meyer, M., Mitchell, A., Moderski, R., Mohrmann, L., Montanari, A., Moore, C., Morris, P., Moulin, E., Muller, J., Murach, T., Nakashima, K., Nayerhoda, A., de Naurois, M., Ndiyavala, H., Niemiec, J., Oakes, L., Odaka, H., Peyaud, B., Piel, Q., Noel, A., Oberholzer, L., O'Brien, P., Ohm, S., Olivera-Nieto, L., de Ona Wilhelmi, E., Ostrowski, M., Panter, M., Panny, S., Parsons, R.D., Peron, G., Pita, S., Renaud, Matthieu, Prokhorov, D.A., Prokoph, H., Pühlhofer, G., Punch, M., Quirrenbach, A., Raab, S., Rauth, R., Reichherzer, P., Reimer, A., Reimer, O., Remy, Q., Renaud, M., Rieger, F., Rinchiuso, L., Romoli, C., Rowell, G., Rudak, B., Ricarte, H. Rueda, Ruiz-Velasco, E., Sahakian, V., Sailer, S., Salzmann, H., Sanchez, D.A., Santangelo, A., Sasaki, M., Scalici, M., Schäfer, J., Schüssler, F., Schutte, H.M., Schwanke, U., Seglar-Arroyo, M., Senniappan, M., Seyffert, A.S., Shafi, N., Shapopi, J.N.S., Shiningayamwe, K., Simoni, R., Sinha, A., Sol, H., Spackman, H., Specovius, A., Spencer, S., Spir-Jacob, M., Stawarz, Ł., Sun, L., Steenkamp, R., Stegmann, C., Steinmassl, S., Steppa, C., Takahashi, T., Tanaka, T., Tavernier, T., Taylor, A.M., Terrier, R., Morgan, C. Thorpe, Thiersen, J.H.E., Tiziani, D., Tluczykont, M., Tomankova, L., Trichard, C., Tsirou, M., Tsuji, M., Tuffs, R., Uchiyama, Y., van der Walt, D.J., van Eldik, C., van Rensburg, C., van Soelen, B., Vasileiadis, G., Veh, J., Venter, C., Viana, A., Vincent, P., Vink, J., Völk, H.J., Wadiasingh, Z., Wagner, S.J., Watson, J., Werner, F., White, R., Wierzcholska, A., Wong, Yu Wun, Yassin, H., Yusafzai, A., Zacharias, M., Zanin, R., Zargaryan, D., Zdziarski, A.A., Zech, A., Zhu, S.J., Zmija, A., Zorn, J., Zouari, S., Żywucka, N.
Contributors: Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Université Paris-Saclay-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Sciences et Lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Univers et Particules de Montpellier (LUPM), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), H.E.S.S.
Source: ISSN: 0004-637X.
Publisher Information: CCSD
American Astronomical Society
Publication Year: 2021
Collection: Université de Montpellier: HAL
Subject Terms: many-body problem, WIMP, thermal, gamma ray: emission, GLAST, galaxy, HESS, GeV, cross section: annihilation, scale: TeV, gamma ray: VHE, dark matter: annihilation, dark matter: mass, [PHYS]Physics [physics], [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
Description: International audience ; Cosmological $N$-body simulations show that Milky Way-sized galaxies harbor a population of unmerged dark matter subhalos. These subhalos could shine in gamma-rays and be eventually detected in gamma-ray surveys as unidentified sources. We performed a thorough selection among unidentified Fermi-LAT Objects (UFOs) to identify them as possible TeV-scale dark matter subhalo candidates. We search for very-high-energy (E $\gtrsim$ 100 GeV) gamma-ray emissions using H.E.S.S. observations towards four selected UFOs. Since no significant very-high-energy gamma-ray emission is detected in any dataset of the four observed UFOs nor in the combined UFO dataset, strong constraints are derived on the product of the velocity-weighted annihilation cross section $\langle \sigma v \rangle$ by the $J$-factor for the dark matter models. The 95% C.L. observed upper limits derived from combined H.E.S.S. observations reach $\langle \sigma v \rangle J$ values of 3.7$\times$10$^{-5}$ and 8.1$\times$10$^{-6}$ GeV$^2$cm$^{-2}$s$^{-1}$ in the $W^+W^-$ and $\tau^+\tau^-$ channels, respectively, for a 1 TeV dark matter mass. Focusing on thermal WIMPs, the H.E.S.S. constraints restrict the $J$-factors to lie in the range 6.1$\times$10$^{19}$ - 2.0$\times$10$^{21}$ GeV$^2$cm$^{-5}$, and the masses to lie between 0.2 and 6 TeV in the $W^+W^-$ channel. For the $\tau^+\tau^-$ channel, the $J$-factors lie in the range 7.0$\times$10$^{19}$ - 7.1$\times$10$^{20}$ GeV$^2$cm$^{-5}$ and the masses lie between 0.2 and 0.5 TeV. Assuming model-dependent predictions from cosmological N-body simulations on the $J$-factor distribution for Milky Way-sized galaxies, the dark matter models with masses greater than 0.3 TeV for the UFO emissions can be ruled out at high confidence level.
Document Type: article in journal/newspaper
Language: English
Relation: info:eu-repo/semantics/altIdentifier/arxiv/2106.00551; ARXIV: 2106.00551; INSPIRE: 1866411
DOI: 10.3847/1538-4357/abff59
Availability: https://hal.science/hal-03262638
https://hal.science/hal-03262638v1/document
https://hal.science/hal-03262638v1/file/Abdalla_2021_ApJ_918_17.pdf
https://doi.org/10.3847/1538-4357/abff59
Rights: http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
Accession Number: edsbas.237CF8C8
Database: BASE
Description
Abstract:International audience ; Cosmological $N$-body simulations show that Milky Way-sized galaxies harbor a population of unmerged dark matter subhalos. These subhalos could shine in gamma-rays and be eventually detected in gamma-ray surveys as unidentified sources. We performed a thorough selection among unidentified Fermi-LAT Objects (UFOs) to identify them as possible TeV-scale dark matter subhalo candidates. We search for very-high-energy (E $\gtrsim$ 100 GeV) gamma-ray emissions using H.E.S.S. observations towards four selected UFOs. Since no significant very-high-energy gamma-ray emission is detected in any dataset of the four observed UFOs nor in the combined UFO dataset, strong constraints are derived on the product of the velocity-weighted annihilation cross section $\langle \sigma v \rangle$ by the $J$-factor for the dark matter models. The 95% C.L. observed upper limits derived from combined H.E.S.S. observations reach $\langle \sigma v \rangle J$ values of 3.7$\times$10$^{-5}$ and 8.1$\times$10$^{-6}$ GeV$^2$cm$^{-2}$s$^{-1}$ in the $W^+W^-$ and $\tau^+\tau^-$ channels, respectively, for a 1 TeV dark matter mass. Focusing on thermal WIMPs, the H.E.S.S. constraints restrict the $J$-factors to lie in the range 6.1$\times$10$^{19}$ - 2.0$\times$10$^{21}$ GeV$^2$cm$^{-5}$, and the masses to lie between 0.2 and 6 TeV in the $W^+W^-$ channel. For the $\tau^+\tau^-$ channel, the $J$-factors lie in the range 7.0$\times$10$^{19}$ - 7.1$\times$10$^{20}$ GeV$^2$cm$^{-5}$ and the masses lie between 0.2 and 0.5 TeV. Assuming model-dependent predictions from cosmological N-body simulations on the $J$-factor distribution for Milky Way-sized galaxies, the dark matter models with masses greater than 0.3 TeV for the UFO emissions can be ruled out at high confidence level.
DOI:10.3847/1538-4357/abff59