Image enhancement variational methods for Enabling Strong Cost Reduction in OLED-based Point-of-Care Immunofluorescent Diagnostic Systems

Gespeichert in:
Bibliographische Detailangaben
Titel: Image enhancement variational methods for Enabling Strong Cost Reduction in OLED-based Point-of-Care Immunofluorescent Diagnostic Systems
Autoren: Damiana Lazzaro, Serena Morigi, P. Melpignano, E. Loli Piccolomini, Luca Benini
Weitere Verfasser: Damiana, Lazzaro, Serena, Morigi, Melpignano, P., Loli Piccolomini, E., Luca, Benini
Publikationsjahr: 2018
Bestand: IRIS Università degli Studi di Bologna (CRIS - Current Research Information System)
Schlagwörter: Variational image processing, image segmentation, image super-resolution, immunofluorescience technique, CMOS image sensors
Beschreibung: Objective:Immunofluorescence diagnostic systems cost is often dominated by high-sensitivity, low-noise CCD-based cameras which are used to acquire the fluorescence images. In this paper we investigate the use of low-cost CMOS sensors in a point-of-care immunofluorescence diagnostic application for the detection and discrimination of four different serotypes of the Dengue virus in a set of human samples. Methods: A two-phase post-processing software pipeline is proposed which consists in a first image enhancement stage for resolution increasing and segmentation, and a second diagnosis stage for the computation of the output concentrations. Results: We present a novel variational coupled model for the joint super-resolution and segmentation stage, and an automatic innovative image analysis for the diagnosis purpose. A specially designed Forward Backward-based numerical algorithm is introduced and its convergence is proved under mild conditions. We present results on a cheap prototype CMOS camera compared with the results of a more expensive CCD device, for the detection of the Dengue virus with a low-cost OLED light source. The combinationoftheCMOSsensorandthedevelopedpost-processingsoftwareallowstocorrectlyidentifythe different Dengue serotype using an automatized procedure. Conclusions: The results demonstrate that our diagnostic imaging system enables camera cost reduction up to 99%, at an acceptable diagnostic accuracy, with respect to the reference CCD-based camera system. The correct detection and identification of the Dengue serotypes has been confirmed by standard diagnostic methods (RT-PCR and ELISA)
Publikationsart: article in journal/newspaper
Dateibeschreibung: STAMPA
Sprache: English
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000426612100006; volume:34; issue:3; firstpage:2932; lastpage:2951; numberofpages:20; journal:INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING; info:eu-repo/grantAgreement/EC/FP7/291125; http://hdl.handle.net/11585/614467
DOI: 10.1002/cnm.2932
Verfügbarkeit: http://hdl.handle.net/11585/614467
https://doi.org/10.1002/cnm.2932
https://onlinelibrary.wiley.com/doi/10.1002/cnm.2932
Rights: info:eu-repo/semantics/openAccess
Dokumentencode: edsbas.166B6BAF
Datenbank: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: http://hdl.handle.net/11585/614467#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Lazzaro%20D
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.166B6BAF
RelevancyScore: 882
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 881.885437011719
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Image enhancement variational methods for Enabling Strong Cost Reduction in OLED-based Point-of-Care Immunofluorescent Diagnostic Systems
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Damiana+Lazzaro%22">Damiana Lazzaro</searchLink><br /><searchLink fieldCode="AR" term="%22Serena+Morigi%22">Serena Morigi</searchLink><br /><searchLink fieldCode="AR" term="%22P%2E+Melpignano%22">P. Melpignano</searchLink><br /><searchLink fieldCode="AR" term="%22E%2E+Loli+Piccolomini%22">E. Loli Piccolomini</searchLink><br /><searchLink fieldCode="AR" term="%22Luca+Benini%22">Luca Benini</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Damiana, Lazzaro<br />Serena, Morigi<br />Melpignano, P.<br />Loli Piccolomini, E.<br />Luca, Benini
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2018
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: IRIS Università degli Studi di Bologna (CRIS - Current Research Information System)
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Variational+image+processing%22">Variational image processing</searchLink><br /><searchLink fieldCode="DE" term="%22image+segmentation%22">image segmentation</searchLink><br /><searchLink fieldCode="DE" term="%22image+super-resolution%22">image super-resolution</searchLink><br /><searchLink fieldCode="DE" term="%22immunofluorescience+technique%22">immunofluorescience technique</searchLink><br /><searchLink fieldCode="DE" term="%22CMOS+image+sensors%22">CMOS image sensors</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Objective:Immunofluorescence diagnostic systems cost is often dominated by high-sensitivity, low-noise CCD-based cameras which are used to acquire the fluorescence images. In this paper we investigate the use of low-cost CMOS sensors in a point-of-care immunofluorescence diagnostic application for the detection and discrimination of four different serotypes of the Dengue virus in a set of human samples. Methods: A two-phase post-processing software pipeline is proposed which consists in a first image enhancement stage for resolution increasing and segmentation, and a second diagnosis stage for the computation of the output concentrations. Results: We present a novel variational coupled model for the joint super-resolution and segmentation stage, and an automatic innovative image analysis for the diagnosis purpose. A specially designed Forward Backward-based numerical algorithm is introduced and its convergence is proved under mild conditions. We present results on a cheap prototype CMOS camera compared with the results of a more expensive CCD device, for the detection of the Dengue virus with a low-cost OLED light source. The combinationoftheCMOSsensorandthedevelopedpost-processingsoftwareallowstocorrectlyidentifythe different Dengue serotype using an automatized procedure. Conclusions: The results demonstrate that our diagnostic imaging system enables camera cost reduction up to 99%, at an acceptable diagnostic accuracy, with respect to the reference CCD-based camera system. The correct detection and identification of the Dengue serotypes has been confirmed by standard diagnostic methods (RT-PCR and ELISA)
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article in journal/newspaper
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: STAMPA
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: info:eu-repo/semantics/altIdentifier/wos/WOS:000426612100006; volume:34; issue:3; firstpage:2932; lastpage:2951; numberofpages:20; journal:INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING; info:eu-repo/grantAgreement/EC/FP7/291125; http://hdl.handle.net/11585/614467
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1002/cnm.2932
– Name: URL
  Label: Availability
  Group: URL
  Data: http://hdl.handle.net/11585/614467<br />https://doi.org/10.1002/cnm.2932<br />https://onlinelibrary.wiley.com/doi/10.1002/cnm.2932
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: info:eu-repo/semantics/openAccess
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.166B6BAF
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.166B6BAF
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1002/cnm.2932
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Variational image processing
        Type: general
      – SubjectFull: image segmentation
        Type: general
      – SubjectFull: image super-resolution
        Type: general
      – SubjectFull: immunofluorescience technique
        Type: general
      – SubjectFull: CMOS image sensors
        Type: general
    Titles:
      – TitleFull: Image enhancement variational methods for Enabling Strong Cost Reduction in OLED-based Point-of-Care Immunofluorescent Diagnostic Systems
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Damiana Lazzaro
      – PersonEntity:
          Name:
            NameFull: Serena Morigi
      – PersonEntity:
          Name:
            NameFull: P. Melpignano
      – PersonEntity:
          Name:
            NameFull: E. Loli Piccolomini
      – PersonEntity:
          Name:
            NameFull: Luca Benini
      – PersonEntity:
          Name:
            NameFull: Damiana, Lazzaro
      – PersonEntity:
          Name:
            NameFull: Serena, Morigi
      – PersonEntity:
          Name:
            NameFull: Melpignano, P.
      – PersonEntity:
          Name:
            NameFull: Loli Piccolomini, E.
      – PersonEntity:
          Name:
            NameFull: Luca, Benini
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2018
          Identifiers:
            – Type: issn-locals
              Value: edsbas
            – Type: issn-locals
              Value: edsbas.oa
ResultId 1