Spatial Modulation for Beyond 5G Communications: Capacity Calculation and Link Adaptation

Uloženo v:
Podrobná bibliografie
Název: Spatial Modulation for Beyond 5G Communications: Capacity Calculation and Link Adaptation
Autoři: Anxo Tato, Carlos Mosquera
Zdroj: Proceedings, Vol 21, Iss 1, p 26 (2019)
Informace o vydavateli: MDPI AG
Rok vydání: 2019
Sbírka: Directory of Open Access Journals: DOAJ Articles
Témata: link adaptation, adaptive coding and modulation, spatial modulation, 5G, neural networks, machine learning, deep learning, General Works
Popis: Spatial Modulation (SM) is a candidate modulation scheme for beyond 5G communications systems due to its reduced hardware complexity and good trade-off between energy and spectral efficiency. This paper proposes two Machine Learning based solutions for easing the implementation of adaptive SM systems. On the one hand, a shallow neural network is shown to be an accurate and simple method for obtaining the capacity of SM. On the other hand, a deep neural network is proposed to select the coding rate in practical adaptive SM systems.
Druh dokumentu: article in journal/newspaper
Jazyk: English
Relation: https://www.mdpi.com/2504-3900/21/1/26; https://doaj.org/toc/2504-3900; https://doaj.org/article/74d98cbdc46e47908846549dc9a2b0cf
DOI: 10.3390/proceedings2019021026
Dostupnost: https://doi.org/10.3390/proceedings2019021026
https://doaj.org/article/74d98cbdc46e47908846549dc9a2b0cf
Přístupové číslo: edsbas.12AE5292
Databáze: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://doi.org/10.3390/proceedings2019021026#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Tato%20A
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.12AE5292
RelevancyScore: 893
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 892.664306640625
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Spatial Modulation for Beyond 5G Communications: Capacity Calculation and Link Adaptation
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Anxo+Tato%22">Anxo Tato</searchLink><br /><searchLink fieldCode="AR" term="%22Carlos+Mosquera%22">Carlos Mosquera</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Proceedings, Vol 21, Iss 1, p 26 (2019)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: MDPI AG
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2019
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Directory of Open Access Journals: DOAJ Articles
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22link+adaptation%22">link adaptation</searchLink><br /><searchLink fieldCode="DE" term="%22adaptive+coding+and+modulation%22">adaptive coding and modulation</searchLink><br /><searchLink fieldCode="DE" term="%22spatial+modulation%22">spatial modulation</searchLink><br /><searchLink fieldCode="DE" term="%225G%22">5G</searchLink><br /><searchLink fieldCode="DE" term="%22neural+networks%22">neural networks</searchLink><br /><searchLink fieldCode="DE" term="%22machine+learning%22">machine learning</searchLink><br /><searchLink fieldCode="DE" term="%22deep+learning%22">deep learning</searchLink><br /><searchLink fieldCode="DE" term="%22General+Works%22">General Works</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Spatial Modulation (SM) is a candidate modulation scheme for beyond 5G communications systems due to its reduced hardware complexity and good trade-off between energy and spectral efficiency. This paper proposes two Machine Learning based solutions for easing the implementation of adaptive SM systems. On the one hand, a shallow neural network is shown to be an accurate and simple method for obtaining the capacity of SM. On the other hand, a deep neural network is proposed to select the coding rate in practical adaptive SM systems.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article in journal/newspaper
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://www.mdpi.com/2504-3900/21/1/26; https://doaj.org/toc/2504-3900; https://doaj.org/article/74d98cbdc46e47908846549dc9a2b0cf
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.3390/proceedings2019021026
– Name: URL
  Label: Availability
  Group: URL
  Data: https://doi.org/10.3390/proceedings2019021026<br />https://doaj.org/article/74d98cbdc46e47908846549dc9a2b0cf
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.12AE5292
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.12AE5292
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.3390/proceedings2019021026
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: link adaptation
        Type: general
      – SubjectFull: adaptive coding and modulation
        Type: general
      – SubjectFull: spatial modulation
        Type: general
      – SubjectFull: 5G
        Type: general
      – SubjectFull: neural networks
        Type: general
      – SubjectFull: machine learning
        Type: general
      – SubjectFull: deep learning
        Type: general
      – SubjectFull: General Works
        Type: general
    Titles:
      – TitleFull: Spatial Modulation for Beyond 5G Communications: Capacity Calculation and Link Adaptation
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Anxo Tato
      – PersonEntity:
          Name:
            NameFull: Carlos Mosquera
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2019
          Identifiers:
            – Type: issn-locals
              Value: edsbas
            – Type: issn-locals
              Value: edsbas.oa
          Titles:
            – TitleFull: Proceedings, Vol 21, Iss 1, p 26 (2019
              Type: main
ResultId 1