Spatial Modulation for Beyond 5G Communications: Capacity Calculation and Link Adaptation
Uloženo v:
| Název: | Spatial Modulation for Beyond 5G Communications: Capacity Calculation and Link Adaptation |
|---|---|
| Autoři: | Anxo Tato, Carlos Mosquera |
| Zdroj: | Proceedings, Vol 21, Iss 1, p 26 (2019) |
| Informace o vydavateli: | MDPI AG |
| Rok vydání: | 2019 |
| Sbírka: | Directory of Open Access Journals: DOAJ Articles |
| Témata: | link adaptation, adaptive coding and modulation, spatial modulation, 5G, neural networks, machine learning, deep learning, General Works |
| Popis: | Spatial Modulation (SM) is a candidate modulation scheme for beyond 5G communications systems due to its reduced hardware complexity and good trade-off between energy and spectral efficiency. This paper proposes two Machine Learning based solutions for easing the implementation of adaptive SM systems. On the one hand, a shallow neural network is shown to be an accurate and simple method for obtaining the capacity of SM. On the other hand, a deep neural network is proposed to select the coding rate in practical adaptive SM systems. |
| Druh dokumentu: | article in journal/newspaper |
| Jazyk: | English |
| Relation: | https://www.mdpi.com/2504-3900/21/1/26; https://doaj.org/toc/2504-3900; https://doaj.org/article/74d98cbdc46e47908846549dc9a2b0cf |
| DOI: | 10.3390/proceedings2019021026 |
| Dostupnost: | https://doi.org/10.3390/proceedings2019021026 https://doaj.org/article/74d98cbdc46e47908846549dc9a2b0cf |
| Přístupové číslo: | edsbas.12AE5292 |
| Databáze: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://doi.org/10.3390/proceedings2019021026# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Tato%20A Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.12AE5292 RelevancyScore: 893 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 892.664306640625 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Spatial Modulation for Beyond 5G Communications: Capacity Calculation and Link Adaptation – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Anxo+Tato%22">Anxo Tato</searchLink><br /><searchLink fieldCode="AR" term="%22Carlos+Mosquera%22">Carlos Mosquera</searchLink> – Name: TitleSource Label: Source Group: Src Data: Proceedings, Vol 21, Iss 1, p 26 (2019) – Name: Publisher Label: Publisher Information Group: PubInfo Data: MDPI AG – Name: DatePubCY Label: Publication Year Group: Date Data: 2019 – Name: Subset Label: Collection Group: HoldingsInfo Data: Directory of Open Access Journals: DOAJ Articles – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22link+adaptation%22">link adaptation</searchLink><br /><searchLink fieldCode="DE" term="%22adaptive+coding+and+modulation%22">adaptive coding and modulation</searchLink><br /><searchLink fieldCode="DE" term="%22spatial+modulation%22">spatial modulation</searchLink><br /><searchLink fieldCode="DE" term="%225G%22">5G</searchLink><br /><searchLink fieldCode="DE" term="%22neural+networks%22">neural networks</searchLink><br /><searchLink fieldCode="DE" term="%22machine+learning%22">machine learning</searchLink><br /><searchLink fieldCode="DE" term="%22deep+learning%22">deep learning</searchLink><br /><searchLink fieldCode="DE" term="%22General+Works%22">General Works</searchLink> – Name: Abstract Label: Description Group: Ab Data: Spatial Modulation (SM) is a candidate modulation scheme for beyond 5G communications systems due to its reduced hardware complexity and good trade-off between energy and spectral efficiency. This paper proposes two Machine Learning based solutions for easing the implementation of adaptive SM systems. On the one hand, a shallow neural network is shown to be an accurate and simple method for obtaining the capacity of SM. On the other hand, a deep neural network is proposed to select the coding rate in practical adaptive SM systems. – Name: TypeDocument Label: Document Type Group: TypDoc Data: article in journal/newspaper – Name: Language Label: Language Group: Lang Data: English – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://www.mdpi.com/2504-3900/21/1/26; https://doaj.org/toc/2504-3900; https://doaj.org/article/74d98cbdc46e47908846549dc9a2b0cf – Name: DOI Label: DOI Group: ID Data: 10.3390/proceedings2019021026 – Name: URL Label: Availability Group: URL Data: https://doi.org/10.3390/proceedings2019021026<br />https://doaj.org/article/74d98cbdc46e47908846549dc9a2b0cf – Name: AN Label: Accession Number Group: ID Data: edsbas.12AE5292 |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.12AE5292 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.3390/proceedings2019021026 Languages: – Text: English Subjects: – SubjectFull: link adaptation Type: general – SubjectFull: adaptive coding and modulation Type: general – SubjectFull: spatial modulation Type: general – SubjectFull: 5G Type: general – SubjectFull: neural networks Type: general – SubjectFull: machine learning Type: general – SubjectFull: deep learning Type: general – SubjectFull: General Works Type: general Titles: – TitleFull: Spatial Modulation for Beyond 5G Communications: Capacity Calculation and Link Adaptation Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Anxo Tato – PersonEntity: Name: NameFull: Carlos Mosquera IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2019 Identifiers: – Type: issn-locals Value: edsbas – Type: issn-locals Value: edsbas.oa Titles: – TitleFull: Proceedings, Vol 21, Iss 1, p 26 (2019 Type: main |
| ResultId | 1 |
Nájsť tento článok vo Web of Science