A weakly supervised approach for recycling code recognition
Gespeichert in:
| Titel: | A weakly supervised approach for recycling code recognition |
|---|---|
| Autoren: | Pellegrini Lorenzo, Maltoni Davide, Graffieti Graffieti, Lomonaco Vincenzo, Mazzini Lisa, Mondardini Marco, Zappoli Milena |
| Weitere Verfasser: | Pellegrini Lorenzo, Maltoni Davide, Graffieti Graffieti, Lomonaco Vincenzo, Mazzini Lisa, Mondardini Marco, Zappoli Milena |
| Publikationsjahr: | 2023 |
| Bestand: | IRIS Università degli Studi di Bologna (CRIS - Current Research Information System) |
| Schlagwörter: | Recycling code recognition, Recycling symbols recognition, Waste recognition, Weakly supervised classification |
| Beschreibung: | Waste sorting at the household level is a virtuous process that can greatly increase material recycling and boost the circular economy. To this purpose, waste must be differentiated by material (e.g., PVC, Polyethylene, Paper, Glass, Aluminum, etc.), a task that can be simplified by printing a recycling code on the product case. Unfortunately, the large number of recycling codes printed on products makes this process unfriendly for many users. In this work, we propose a vision-based mobile application to support users in recognizing recycling codes for proper waste sorting. The proposed system combines a dual-head CNN with an image processing pipeline (based on domain knowledge) in order to improve: (i) the reliability of symbol detection/classification and (ii) the weakly-supervised labeling of new samples during iterative training. Our experimental results prove the feasibility of developing effective applications with minimum effort in terms of data collection and labeling, which is one of the main obstacles to successfully applying deep-learning techniques to real-world problems. |
| Publikationsart: | article in journal/newspaper |
| Dateibeschreibung: | ELETTRONICO |
| Sprache: | English |
| Relation: | info:eu-repo/semantics/altIdentifier/wos/WOS:000906892100009; volume:215; firstpage:1; lastpage:11; numberofpages:11; journal:EXPERT SYSTEMS WITH APPLICATIONS; https://hdl.handle.net/11585/912610; https://www.sciencedirect.com/science/article/pii/S0957417422023004 |
| DOI: | 10.1016/j.eswa.2022.119282 |
| Verfügbarkeit: | https://hdl.handle.net/11585/912610 https://doi.org/10.1016/j.eswa.2022.119282 https://www.sciencedirect.com/science/article/pii/S0957417422023004 |
| Rights: | info:eu-repo/semantics/openAccess |
| Dokumentencode: | edsbas.10F751AC |
| Datenbank: | BASE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://hdl.handle.net/11585/912610# Name: EDS - BASE (s4221598) Category: fullText Text: View record from BASE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Lorenzo%20P Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsbas DbLabel: BASE An: edsbas.10F751AC RelevancyScore: 944 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 943.653564453125 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: A weakly supervised approach for recycling code recognition – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Pellegrini+Lorenzo%22">Pellegrini Lorenzo</searchLink><br /><searchLink fieldCode="AR" term="%22Maltoni+Davide%22">Maltoni Davide</searchLink><br /><searchLink fieldCode="AR" term="%22Graffieti+Graffieti%22">Graffieti Graffieti</searchLink><br /><searchLink fieldCode="AR" term="%22Lomonaco+Vincenzo%22">Lomonaco Vincenzo</searchLink><br /><searchLink fieldCode="AR" term="%22Mazzini+Lisa%22">Mazzini Lisa</searchLink><br /><searchLink fieldCode="AR" term="%22Mondardini+Marco%22">Mondardini Marco</searchLink><br /><searchLink fieldCode="AR" term="%22Zappoli+Milena%22">Zappoli Milena</searchLink> – Name: Author Label: Contributors Group: Au Data: Pellegrini Lorenzo<br />Maltoni Davide<br />Graffieti Graffieti<br />Lomonaco Vincenzo<br />Mazzini Lisa<br />Mondardini Marco<br />Zappoli Milena – Name: DatePubCY Label: Publication Year Group: Date Data: 2023 – Name: Subset Label: Collection Group: HoldingsInfo Data: IRIS Università degli Studi di Bologna (CRIS - Current Research Information System) – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Recycling+code+recognition%22">Recycling code recognition</searchLink><br /><searchLink fieldCode="DE" term="%22Recycling+symbols+recognition%22">Recycling symbols recognition</searchLink><br /><searchLink fieldCode="DE" term="%22Waste+recognition%22">Waste recognition</searchLink><br /><searchLink fieldCode="DE" term="%22Weakly+supervised+classification%22">Weakly supervised classification</searchLink> – Name: Abstract Label: Description Group: Ab Data: Waste sorting at the household level is a virtuous process that can greatly increase material recycling and boost the circular economy. To this purpose, waste must be differentiated by material (e.g., PVC, Polyethylene, Paper, Glass, Aluminum, etc.), a task that can be simplified by printing a recycling code on the product case. Unfortunately, the large number of recycling codes printed on products makes this process unfriendly for many users. In this work, we propose a vision-based mobile application to support users in recognizing recycling codes for proper waste sorting. The proposed system combines a dual-head CNN with an image processing pipeline (based on domain knowledge) in order to improve: (i) the reliability of symbol detection/classification and (ii) the weakly-supervised labeling of new samples during iterative training. Our experimental results prove the feasibility of developing effective applications with minimum effort in terms of data collection and labeling, which is one of the main obstacles to successfully applying deep-learning techniques to real-world problems. – Name: TypeDocument Label: Document Type Group: TypDoc Data: article in journal/newspaper – Name: Format Label: File Description Group: SrcInfo Data: ELETTRONICO – Name: Language Label: Language Group: Lang Data: English – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: info:eu-repo/semantics/altIdentifier/wos/WOS:000906892100009; volume:215; firstpage:1; lastpage:11; numberofpages:11; journal:EXPERT SYSTEMS WITH APPLICATIONS; https://hdl.handle.net/11585/912610; https://www.sciencedirect.com/science/article/pii/S0957417422023004 – Name: DOI Label: DOI Group: ID Data: 10.1016/j.eswa.2022.119282 – Name: URL Label: Availability Group: URL Data: https://hdl.handle.net/11585/912610<br />https://doi.org/10.1016/j.eswa.2022.119282<br />https://www.sciencedirect.com/science/article/pii/S0957417422023004 – Name: Copyright Label: Rights Group: Cpyrght Data: info:eu-repo/semantics/openAccess – Name: AN Label: Accession Number Group: ID Data: edsbas.10F751AC |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.10F751AC |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1016/j.eswa.2022.119282 Languages: – Text: English Subjects: – SubjectFull: Recycling code recognition Type: general – SubjectFull: Recycling symbols recognition Type: general – SubjectFull: Waste recognition Type: general – SubjectFull: Weakly supervised classification Type: general Titles: – TitleFull: A weakly supervised approach for recycling code recognition Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Pellegrini Lorenzo – PersonEntity: Name: NameFull: Maltoni Davide – PersonEntity: Name: NameFull: Graffieti Graffieti – PersonEntity: Name: NameFull: Lomonaco Vincenzo – PersonEntity: Name: NameFull: Mazzini Lisa – PersonEntity: Name: NameFull: Mondardini Marco – PersonEntity: Name: NameFull: Zappoli Milena – PersonEntity: Name: NameFull: Pellegrini Lorenzo – PersonEntity: Name: NameFull: Maltoni Davide – PersonEntity: Name: NameFull: Graffieti Graffieti – PersonEntity: Name: NameFull: Lomonaco Vincenzo – PersonEntity: Name: NameFull: Mazzini Lisa – PersonEntity: Name: NameFull: Mondardini Marco – PersonEntity: Name: NameFull: Zappoli Milena IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2023 Identifiers: – Type: issn-locals Value: edsbas – Type: issn-locals Value: edsbas.oa |
| ResultId | 1 |
Nájsť tento článok vo Web of Science