A weakly supervised approach for recycling code recognition

Gespeichert in:
Bibliographische Detailangaben
Titel: A weakly supervised approach for recycling code recognition
Autoren: Pellegrini Lorenzo, Maltoni Davide, Graffieti Graffieti, Lomonaco Vincenzo, Mazzini Lisa, Mondardini Marco, Zappoli Milena
Weitere Verfasser: Pellegrini Lorenzo, Maltoni Davide, Graffieti Graffieti, Lomonaco Vincenzo, Mazzini Lisa, Mondardini Marco, Zappoli Milena
Publikationsjahr: 2023
Bestand: IRIS Università degli Studi di Bologna (CRIS - Current Research Information System)
Schlagwörter: Recycling code recognition, Recycling symbols recognition, Waste recognition, Weakly supervised classification
Beschreibung: Waste sorting at the household level is a virtuous process that can greatly increase material recycling and boost the circular economy. To this purpose, waste must be differentiated by material (e.g., PVC, Polyethylene, Paper, Glass, Aluminum, etc.), a task that can be simplified by printing a recycling code on the product case. Unfortunately, the large number of recycling codes printed on products makes this process unfriendly for many users. In this work, we propose a vision-based mobile application to support users in recognizing recycling codes for proper waste sorting. The proposed system combines a dual-head CNN with an image processing pipeline (based on domain knowledge) in order to improve: (i) the reliability of symbol detection/classification and (ii) the weakly-supervised labeling of new samples during iterative training. Our experimental results prove the feasibility of developing effective applications with minimum effort in terms of data collection and labeling, which is one of the main obstacles to successfully applying deep-learning techniques to real-world problems.
Publikationsart: article in journal/newspaper
Dateibeschreibung: ELETTRONICO
Sprache: English
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000906892100009; volume:215; firstpage:1; lastpage:11; numberofpages:11; journal:EXPERT SYSTEMS WITH APPLICATIONS; https://hdl.handle.net/11585/912610; https://www.sciencedirect.com/science/article/pii/S0957417422023004
DOI: 10.1016/j.eswa.2022.119282
Verfügbarkeit: https://hdl.handle.net/11585/912610
https://doi.org/10.1016/j.eswa.2022.119282
https://www.sciencedirect.com/science/article/pii/S0957417422023004
Rights: info:eu-repo/semantics/openAccess
Dokumentencode: edsbas.10F751AC
Datenbank: BASE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://hdl.handle.net/11585/912610#
    Name: EDS - BASE (s4221598)
    Category: fullText
    Text: View record from BASE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Lorenzo%20P
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsbas
DbLabel: BASE
An: edsbas.10F751AC
RelevancyScore: 944
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 943.653564453125
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: A weakly supervised approach for recycling code recognition
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Pellegrini+Lorenzo%22">Pellegrini Lorenzo</searchLink><br /><searchLink fieldCode="AR" term="%22Maltoni+Davide%22">Maltoni Davide</searchLink><br /><searchLink fieldCode="AR" term="%22Graffieti+Graffieti%22">Graffieti Graffieti</searchLink><br /><searchLink fieldCode="AR" term="%22Lomonaco+Vincenzo%22">Lomonaco Vincenzo</searchLink><br /><searchLink fieldCode="AR" term="%22Mazzini+Lisa%22">Mazzini Lisa</searchLink><br /><searchLink fieldCode="AR" term="%22Mondardini+Marco%22">Mondardini Marco</searchLink><br /><searchLink fieldCode="AR" term="%22Zappoli+Milena%22">Zappoli Milena</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Pellegrini Lorenzo<br />Maltoni Davide<br />Graffieti Graffieti<br />Lomonaco Vincenzo<br />Mazzini Lisa<br />Mondardini Marco<br />Zappoli Milena
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2023
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: IRIS Università degli Studi di Bologna (CRIS - Current Research Information System)
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Recycling+code+recognition%22">Recycling code recognition</searchLink><br /><searchLink fieldCode="DE" term="%22Recycling+symbols+recognition%22">Recycling symbols recognition</searchLink><br /><searchLink fieldCode="DE" term="%22Waste+recognition%22">Waste recognition</searchLink><br /><searchLink fieldCode="DE" term="%22Weakly+supervised+classification%22">Weakly supervised classification</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Waste sorting at the household level is a virtuous process that can greatly increase material recycling and boost the circular economy. To this purpose, waste must be differentiated by material (e.g., PVC, Polyethylene, Paper, Glass, Aluminum, etc.), a task that can be simplified by printing a recycling code on the product case. Unfortunately, the large number of recycling codes printed on products makes this process unfriendly for many users. In this work, we propose a vision-based mobile application to support users in recognizing recycling codes for proper waste sorting. The proposed system combines a dual-head CNN with an image processing pipeline (based on domain knowledge) in order to improve: (i) the reliability of symbol detection/classification and (ii) the weakly-supervised labeling of new samples during iterative training. Our experimental results prove the feasibility of developing effective applications with minimum effort in terms of data collection and labeling, which is one of the main obstacles to successfully applying deep-learning techniques to real-world problems.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article in journal/newspaper
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: ELETTRONICO
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: info:eu-repo/semantics/altIdentifier/wos/WOS:000906892100009; volume:215; firstpage:1; lastpage:11; numberofpages:11; journal:EXPERT SYSTEMS WITH APPLICATIONS; https://hdl.handle.net/11585/912610; https://www.sciencedirect.com/science/article/pii/S0957417422023004
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1016/j.eswa.2022.119282
– Name: URL
  Label: Availability
  Group: URL
  Data: https://hdl.handle.net/11585/912610<br />https://doi.org/10.1016/j.eswa.2022.119282<br />https://www.sciencedirect.com/science/article/pii/S0957417422023004
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: info:eu-repo/semantics/openAccess
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsbas.10F751AC
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.10F751AC
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1016/j.eswa.2022.119282
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Recycling code recognition
        Type: general
      – SubjectFull: Recycling symbols recognition
        Type: general
      – SubjectFull: Waste recognition
        Type: general
      – SubjectFull: Weakly supervised classification
        Type: general
    Titles:
      – TitleFull: A weakly supervised approach for recycling code recognition
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Pellegrini Lorenzo
      – PersonEntity:
          Name:
            NameFull: Maltoni Davide
      – PersonEntity:
          Name:
            NameFull: Graffieti Graffieti
      – PersonEntity:
          Name:
            NameFull: Lomonaco Vincenzo
      – PersonEntity:
          Name:
            NameFull: Mazzini Lisa
      – PersonEntity:
          Name:
            NameFull: Mondardini Marco
      – PersonEntity:
          Name:
            NameFull: Zappoli Milena
      – PersonEntity:
          Name:
            NameFull: Pellegrini Lorenzo
      – PersonEntity:
          Name:
            NameFull: Maltoni Davide
      – PersonEntity:
          Name:
            NameFull: Graffieti Graffieti
      – PersonEntity:
          Name:
            NameFull: Lomonaco Vincenzo
      – PersonEntity:
          Name:
            NameFull: Mazzini Lisa
      – PersonEntity:
          Name:
            NameFull: Mondardini Marco
      – PersonEntity:
          Name:
            NameFull: Zappoli Milena
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2023
          Identifiers:
            – Type: issn-locals
              Value: edsbas
            – Type: issn-locals
              Value: edsbas.oa
ResultId 1