Upotreba dubokog učenja za klasifikaciju tehničkih dokumenat

Uložené v:
Podrobná bibliografia
Názov: Upotreba dubokog učenja za klasifikaciju tehničkih dokumenat
Autori: Kokanović, Karlo
Prispievatelia: Herceg, Marijan
Informácie o vydavateľovi: Sveučilište Josipa Jurja Strossmayera u Osijeku. Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek. Zavod za komunikacije. Katedra za elektroniku i mikroelektroniku., 2025.
Rok vydania: 2025
Predmety: classification, TECHNICAL SCIENCES. Electrical Engineering. Telecommunications and Informatics, tehnička dokumentacija, deep learning, TEHNIČKE ZNANOSTI. Elektrotehnika. Telekomunikacije i informatika, duboko učenje, GraphSAGE, klasifikacija, technical documentation, Python
Popis: As part of this work, a deep neural network model was developed for the classification of technical documentation. For classification of technical documentation, a model was developed that refers to documents of the electricity section within the IPC categorization. For training purposes, a database of 6000 unique documents from six different classes within electricity (H01, H02, H03, H04, H05 and H10) was first collected. Data within each document was extracted using the tesseract algorithm, where both textual and image elements were extracted. The document title and its summary were used from the textual part, and the diagram located on the first page of the document was used for the image part. This information is pre-processed to match the format of the final model. Since the images within the documents differ, the YOLOV5 model was used to classify the images into electronic diagrams or flowcharts. If an image is an electronic schematic, the VGG19 model is applied to it to handle and extract relevant features. If the image is a flowchart, the textual content of that flowchart is extracted and preprocessed. The GraphSAGE neural network graph model was used for document classification. The final deep neural network model achieved significant results during the training, validation and testing process. The model was shown to have consistent prediction with minimal deviations in classification metrics and to be able to correctly handle features within technical documentation.
U sklopu ovog rada razvijen je model duboke neuronske mreže za klasifikaciju tehničke dokumentacije. Tehnička dokumentacija, za čiju je klasifikaciju model razvijen, se odnosi na dokumente odjeljka elektricitet unutar IPC kategorizacije. Za potrebe treniranja najprije je prikupljena baza podataka od 6000 unikatnih dokumenata iz šest različitih klasa unutar elektriciteta (H01, H02, H03, H04, H05 i H10). Podatci unutar svakog dokumenta izvlačeni su putem tesseract algoritma, pri čemu su izdvojeni i tekstualni i slikovni elementi. Od tekstualnog dijela korišteni su naslov dokumenta i njegov sažetak, a za slikovni dio korištena je shema koja se nalazi na prvoj stranici dokumenta. Te su informacije predobrađene kako bi odgovarale formatu konačnog modela. Budući da se slike unutar dokumenata razlikuju, korišten je model YOLOV5 za klasifikaciju slika na elektroničke sheme ili dijagrame tijeka. Ako je neka slika elektronička shema, na nju je primijenjen VGG19 model za rukovanje i izvlačenje relevantnih značajki. Ako je pak slika dijagram tijeka, izvlači se tekstualni sadržaj tog dijagrama i predobrađuje. Za klasifikaciju dokumenata korišten je model graf neuronskih mreža GraphSAGE. Konačni model duboke neuronske mreže postigao je značajne rezultate prilikom procesa treniranja, validacije i testiranja. Pokazano je da model ima konzistentnu predikciju uz minimalna odstupanja metrika klasifikacije te da može pravilno rukovati značajkama unutar tehničke dokumentacije.
Druh dokumentu: Master thesis
Popis súboru: application/pdf
Jazyk: Croatian
Prístupová URL adresa: https://repozitorij.etfos.hr/islandora/object/etfos:5513/datastream/PDF
https://urn.nsk.hr/urn:nbn:hr:200:354014
https://repozitorij.etfos.hr/islandora/object/etfos:5513
Rights: URL: http://rightsstatements.org/vocab/InC/1.0/
Prístupové číslo: edsair.od......3912..67c4bd32d6ac7891bd06a1ac6d03736d
Databáza: OpenAIRE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://explore.openaire.eu/search/publication?articleId=od______3912%3A%3A67c4bd32d6ac7891bd06a1ac6d03736d
    Name: EDS - OpenAIRE (s4221598)
    Category: fullText
    Text: View record at OpenAIRE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Kokanovi%C4%87%20K
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsair
DbLabel: OpenAIRE
An: edsair.od......3912..67c4bd32d6ac7891bd06a1ac6d03736d
RelevancyScore: 887
AccessLevel: 3
PubType: Dissertation/ Thesis
PubTypeId: dissertation
PreciseRelevancyScore: 886.749633789063
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Upotreba dubokog učenja za klasifikaciju tehničkih dokumenat
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Kokanović%2C+Karlo%22">Kokanović, Karlo</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Herceg, Marijan
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Sveučilište Josipa Jurja Strossmayera u Osijeku. Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek. Zavod za komunikacije. Katedra za elektroniku i mikroelektroniku., 2025.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2025
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22classification%22">classification</searchLink><br /><searchLink fieldCode="DE" term="%22TECHNICAL+SCIENCES%2E+Electrical+Engineering%2E+Telecommunications+and+Informatics%22">TECHNICAL SCIENCES. Electrical Engineering. Telecommunications and Informatics</searchLink><br /><searchLink fieldCode="DE" term="%22tehnička+dokumentacija%22">tehnička dokumentacija</searchLink><br /><searchLink fieldCode="DE" term="%22deep+learning%22">deep learning</searchLink><br /><searchLink fieldCode="DE" term="%22TEHNIČKE+ZNANOSTI%2E+Elektrotehnika%2E+Telekomunikacije+i+informatika%22">TEHNIČKE ZNANOSTI. Elektrotehnika. Telekomunikacije i informatika</searchLink><br /><searchLink fieldCode="DE" term="%22duboko+učenje%22">duboko učenje</searchLink><br /><searchLink fieldCode="DE" term="%22GraphSAGE%22">GraphSAGE</searchLink><br /><searchLink fieldCode="DE" term="%22klasifikacija%22">klasifikacija</searchLink><br /><searchLink fieldCode="DE" term="%22technical+documentation%22">technical documentation</searchLink><br /><searchLink fieldCode="DE" term="%22Python%22">Python</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: As part of this work, a deep neural network model was developed for the classification of technical documentation. For classification of technical documentation, a model was developed that refers to documents of the electricity section within the IPC categorization. For training purposes, a database of 6000 unique documents from six different classes within electricity (H01, H02, H03, H04, H05 and H10) was first collected. Data within each document was extracted using the tesseract algorithm, where both textual and image elements were extracted. The document title and its summary were used from the textual part, and the diagram located on the first page of the document was used for the image part. This information is pre-processed to match the format of the final model. Since the images within the documents differ, the YOLOV5 model was used to classify the images into electronic diagrams or flowcharts. If an image is an electronic schematic, the VGG19 model is applied to it to handle and extract relevant features. If the image is a flowchart, the textual content of that flowchart is extracted and preprocessed. The GraphSAGE neural network graph model was used for document classification. The final deep neural network model achieved significant results during the training, validation and testing process. The model was shown to have consistent prediction with minimal deviations in classification metrics and to be able to correctly handle features within technical documentation.<br />U sklopu ovog rada razvijen je model duboke neuronske mreže za klasifikaciju tehničke dokumentacije. Tehnička dokumentacija, za čiju je klasifikaciju model razvijen, se odnosi na dokumente odjeljka elektricitet unutar IPC kategorizacije. Za potrebe treniranja najprije je prikupljena baza podataka od 6000 unikatnih dokumenata iz šest različitih klasa unutar elektriciteta (H01, H02, H03, H04, H05 i H10). Podatci unutar svakog dokumenta izvlačeni su putem tesseract algoritma, pri čemu su izdvojeni i tekstualni i slikovni elementi. Od tekstualnog dijela korišteni su naslov dokumenta i njegov sažetak, a za slikovni dio korištena je shema koja se nalazi na prvoj stranici dokumenta. Te su informacije predobrađene kako bi odgovarale formatu konačnog modela. Budući da se slike unutar dokumenata razlikuju, korišten je model YOLOV5 za klasifikaciju slika na elektroničke sheme ili dijagrame tijeka. Ako je neka slika elektronička shema, na nju je primijenjen VGG19 model za rukovanje i izvlačenje relevantnih značajki. Ako je pak slika dijagram tijeka, izvlači se tekstualni sadržaj tog dijagrama i predobrađuje. Za klasifikaciju dokumenata korišten je model graf neuronskih mreža GraphSAGE. Konačni model duboke neuronske mreže postigao je značajne rezultate prilikom procesa treniranja, validacije i testiranja. Pokazano je da model ima konzistentnu predikciju uz minimalna odstupanja metrika klasifikacije te da može pravilno rukovati značajkama unutar tehničke dokumentacije.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Master thesis
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: application/pdf
– Name: Language
  Label: Language
  Group: Lang
  Data: Croatian
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://repozitorij.etfos.hr/islandora/object/etfos:5513/datastream/PDF" linkWindow="_blank">https://repozitorij.etfos.hr/islandora/object/etfos:5513/datastream/PDF</link><br /><link linkTarget="URL" linkTerm="https://urn.nsk.hr/urn:nbn:hr:200:354014" linkWindow="_blank">https://urn.nsk.hr/urn:nbn:hr:200:354014</link><br /><link linkTarget="URL" linkTerm="https://repozitorij.etfos.hr/islandora/object/etfos:5513" linkWindow="_blank">https://repozitorij.etfos.hr/islandora/object/etfos:5513</link>
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: URL: http://rightsstatements.org/vocab/InC/1.0/
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsair.od......3912..67c4bd32d6ac7891bd06a1ac6d03736d
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.od......3912..67c4bd32d6ac7891bd06a1ac6d03736d
RecordInfo BibRecord:
  BibEntity:
    Languages:
      – Text: Croatian
    Subjects:
      – SubjectFull: classification
        Type: general
      – SubjectFull: TECHNICAL SCIENCES. Electrical Engineering. Telecommunications and Informatics
        Type: general
      – SubjectFull: tehnička dokumentacija
        Type: general
      – SubjectFull: deep learning
        Type: general
      – SubjectFull: TEHNIČKE ZNANOSTI. Elektrotehnika. Telekomunikacije i informatika
        Type: general
      – SubjectFull: duboko učenje
        Type: general
      – SubjectFull: GraphSAGE
        Type: general
      – SubjectFull: klasifikacija
        Type: general
      – SubjectFull: technical documentation
        Type: general
      – SubjectFull: Python
        Type: general
    Titles:
      – TitleFull: Upotreba dubokog učenja za klasifikaciju tehničkih dokumenat
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Kokanović, Karlo
      – PersonEntity:
          Name:
            NameFull: Herceg, Marijan
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 21
              M: 02
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-locals
              Value: edsair
ResultId 1